内容简介:从epoll源码分析它的使用
首先来看看epoll_create的真身
SYSCALL_DEFINE1(epoll_create, int, size) { if (size <= 0) return -EINVAL; //也就是说参数size根本用不上 return sys_epoll_create1(0); }
再来看看epoll_create1的真身
SYSCALL_DEFINE1(epoll_create1, int, flags) { int error, fd; struct eventpoll *ep = NULL; struct file *file; BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); if (flags & ~EPOLL_CLOEXEC) return -EINVAL; error = ep_alloc(&ep); if (error < 0) return error; fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); if (fd < 0) { error = fd; goto out_free_ep; } file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, O_RDWR | (flags & O_CLOEXEC)); if (IS_ERR(file)) { error = PTR_ERR(file); goto out_free_fd; } ep->file = file; fd_install(fd, file); return fd; out_free_fd: put_unused_fd(fd); out_free_ep: ep_free(ep); return error; }
1. 对epoll来讲,目前唯一有效的flag只有EPOLL_CLOEXEC
2. ep_alloc初始化spinlock_t锁,mutex锁
3. 每次epoll_create1一个epollfd,内核就会分配一个eventpoll 与之对应
struct eventpoll
{
spinlock_t lock;
//添加,修改,删除fd,epoll_wait返回,内核态向用户态传递数据时都会持有这个锁,所以多线程操作epoll是安全的,内核做了保护
struct mutex mtx;
/* Wait queue used by sys_epoll_wait()*/
wait_queue_head_t wq;
/* Wait queue used by file->poll() */
wait_queue_head_t poll_wait;
//所有触发的epitem都放在这个链表里面
struct list_head rdllist;
//红黑树的root节点,所有要监听的epitem都在这个红黑树中,我们可以把红黑树的所有节点都看作epitem
struct rb_root rbr;
/*
* This is a single linked list that chains all the “struct epitem” that
* happened while transferring ready events to userspace w/out
* holding ->lock.
*/
struct epitem *ovflist;
/* wakeup_source used when ep_scan_ready_list is running */
struct wakeup_source *ws;
/* The user that created the eventpoll descriptor */
struct user_struct *user;
struct file *file;
/* used to optimize loop detection check */
int visited;
struct list_head visited_list_link;
};
3. 因为epollfd本身不存在一个真正的文件与之对应,不像socket,所以内核会分配一个真正的file结构且有真正的fd,然后和epollfd对应
struct file{
//eventpoll存储在这里
void *private_data;
struct list_head f_ep_links;
};
这样,通过epollfd找到它在内核中的file,然后通过file找到了存储的eventpoll
4. struct epitem {
/* RB tree node used to link this structure to the eventpoll RB tree */
struct rb_node rbn;
//当这个节点触发的时候,会链到之前提到的eventpoll中的rdllist中去
struct list_head rdllink;
/*
* Works together “struct eventpoll”->ovflist in keeping the
* single linked chain of items.
*/
struct epitem *next;
//epitem对应的fd和真正的file
struct epoll_filefd ffd;
/* Number of active wait queue attached to poll operations */
int nwait;
/* List containing poll wait queues */
struct list_head pwqlist;
//epitem属于的eventpoll
struct eventpoll *ep;
/* List header used to link this item to the “struct file” items list */
struct list_head fllink;
/* wakeup_source used when EPOLLWAKEUP is set */
struct wakeup_source *ws;
/* The structure that describe the interested events and the source fd */
//epitem关心的事件
struct epoll_event event;
};
struct epoll_filefd{
struct file *file;
int fd;
};
SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, struct epoll_event __user *, event) { int error; int did_lock_epmutex = 0; struct file *file, *tfile; struct eventpoll *ep; struct epitem *epi; struct epoll_event epds; error = -EFAULT; if (ep_op_has_event(op) && copy_from_user(&epds, event, sizeof(struct epoll_event))) goto error_return; /* Get the "struct file *" for the eventpoll file */ error = -EBADF; //这里就是之前说的通过epollfd找到对应的file,后续会通过这个file找到eventpoll file = fget(epfd); if (!file) goto error_return; /* Get the "struct file *" for the target file */ tfile = fget(fd); if (!tfile) goto error_fput; /* The target file descriptor must support poll */ error = -EPERM; if (!tfile->f_op || !tfile->f_op->poll) goto error_tgt_fput; /* Check if EPOLLWAKEUP is allowed */ if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) epds.events &= ~EPOLLWAKEUP; /* * We have to check that the file structure underneath the file descriptor * the user passed to us _is_ an eventpoll file. And also we do not permit * adding an epoll file descriptor inside itself. */ error = -EINVAL; //epoll不能监听自己 if (file == tfile || !is_file_epoll(file)) goto error_tgt_fput; /* * At this point it is safe to assume that the "private_data" contains * our own data structure. */ //这里就是通过file找到对应的eventpoll ep = file->private_data; /* * When we insert an epoll file descriptor, inside another epoll file * descriptor, there is the change of creating closed loops, which are * better be handled here, than in more critical paths. While we are * checking for loops we also determine the list of files reachable * and hang them on the tfile_check_list, so we can check that we * haven't created too many possible wakeup paths. * * We need to hold the epmutex across both ep_insert and ep_remove * b/c we want to make sure we are looking at a coherent view of * epoll network. */ if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) { mutex_lock(&epmutex); did_lock_epmutex = 1; } if (op == EPOLL_CTL_ADD) { if (is_file_epoll(tfile)) { error = -ELOOP; if (ep_loop_check(ep, tfile) != 0) { clear_tfile_check_list(); goto error_tgt_fput; } } else list_add(&tfile->f_tfile_llink, &tfile_check_list); } mutex_lock_nested(&ep->mtx, 0); /* * Try to lookup the file inside our RB tree, Since we grabbed "mtx" * above, we can be sure to be able to use the item looked up by * ep_find() till we release the mutex. */ //我们在接口层面知道一个fd只能添加一次,这里对应到红黑树中是epitem epi = ep_find(ep, tfile, fd); error = -EINVAL; switch (op) { case EPOLL_CTL_ADD: if (!epi) { epds.events |= POLLERR | POLLHUP; error = ep_insert(ep, &epds, tfile, fd); } else error = -EEXIST; clear_tfile_check_list(); break; case EPOLL_CTL_DEL: if (epi) error = ep_remove(ep, epi); else error = -ENOENT; break; case EPOLL_CTL_MOD: if (epi) { epds.events |= POLLERR | POLLHUP; error = ep_modify(ep, epi, &epds); } else error = -ENOENT; break; } mutex_unlock(&ep->mtx); error_tgt_fput: if (did_lock_epmutex) mutex_unlock(&epmutex); fput(tfile); error_fput: fput(file); error_return: return error; }
这里我们可以很清楚的看到EPOLL_CTL_ADD,EPOLL_CTL_DEL,EPOLL_CTL_MOD操作都是有加锁保护的,ep_insert使用了spinlock_t 锁,内部首先是查看eventpoll中user成员,查看给的最大监听数量,然后再分配一个epitem,并设置回调ep_ptable_queue_proc,也就是红黑树的节点epitem有事件触发就调用这个回调。这个回调将触发的epitem放到waitqueue中,并设置了回调ep_poll_callback,这个waitqueue是fd所持有的。然后这个回调内部将触发的epitem放到了之前说的eventpoll的rdllist中。最后我们的epoll_wait就是遍历这个rdllist,如果有事件触发,就开始从内核态拷贝数据给用户态,这里也使用了spinlock_t锁。拷贝完之后的操作,在这里还设置了ET和LT的区别,如果是ET,epitem是不会再进入到rdllist,除非fd再次发生了状态改变,ep_poll_callback被调用。如果是LT,不管你还有没有激活的事件或者有效的数据,都会被重新插入到rdllist,再下一次epoll_wait的时候又返回给你。
总结:
1. 我们不是一定非要在主线程中listen之后完成accept,recv然后把数据丢给工作线程池。因为在多线程中EPOLL_CTL_ADD,EPOLL_CTL_DEL,EPOLL_CTL_MOD都是安全的,我们完全可以让线程池来代替主线程做accep,recv,当然这个线程池应该是CPU密集的,数量最好是CPU核数。这样主线程只做一件事情监听就行了,连接管理就交给这个线程池来做,最后数据处理还是给工作线程池。
2. 对比select,每次调用select时都要把fd集合从用户态拷贝到内核态,每次都要重复拷贝,而epoll只是在EPOLL_CTL_ADD调用了一次,也就是只拷贝了一次
3. 对比select,每次调用select的返回都需要在内核遍历传进来的fd集合,而epoll内部是通过红黑树结构查找速度更快,并且触发的事件都会通过回调函数放到rdllist,而epoll_wait返回仅仅只是从rdllist拿已经触发的事件。select和epoll都会睡眠和唤醒的状态切换,但是select在唤醒的时候需要去遍历,而epoll只需要判断链表是否为空,也节约了CPU消耗
4. 对比select,select支持的文件描述符默认是1024,就算修改配置后面遍历的速度也会越来越慢没有红黑树快。而epoll支持的文件描述符是一个进程能够打开的最大文件描述符数目1G内存大概可以提供10万
5. 联系著名的“惊群”现象,多线程中epoll_wait会不会因为同一个fd的事件触发而触发了多个线程去处理?由于epoll_wait从rdllist拿事件是加锁了的,所以不会。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- Spring事务源码分析专题(一)JdbcTemplate使用及源码分析
- 使用源码编译Hadoop
- GYHttpMock:使用及源码解析
- fishhook使用场景&源码分析
- WMRouter使用和源码分析
- 使用 Clion 阅读 Envoy 源码
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。