Bias and Variance in Machine Learning
The key to success is finding the balance between bias and variance.
In predictive analytics, we build machine learning models to make predictions on new, previously unseen samples. The whole purpose is to be able to predict the unknown. But the models cannot just make predictions out of the blue. We show some samples to the model and train it. Then we expect the model to make predictions on samples from the same distribution.
There is no such thing as a perfect model so the model we build and train will have errors. There will be differences between the predictions and the actual values. The performance of a model is inversely proportional to the difference between the actual values and the predictions. The smaller the difference, the better the model. Our goal is to try to minimize the error. We cannot eliminate the error but we can reduce it. The part of the error that can be reduced has two components: Bias and Variance .
The performance of a model depends on the balance between bias and variance. The optimum model lays somewhere in between bias and variance. Please note that there is always a trade-off between bias and variance. The challenge is to find the right balance.
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Linux内核设计与实现
拉芙 / 陈莉君、唐华、张波 / 机械工业出版社 / 2006-1 / 38.00元
《Linux内核设计与实现》基于Linux2.6内核系列详细介绍Linux内核系统,覆盖了从核心内核系统的应用到内核设计与实现等各方面的内容。主要内容包括:进程管理、系统调用、中断和中断处理程序、内核同步、时间管理、内存管理、地址空间、调试技术等。本书理论联系实践,既介绍理论也讨论具体应用,能够带领读者快速走进Linux内核世界,真正开发内核代码。 本书适合作为高等院校操作系统课程的教材......一起来看看 《Linux内核设计与实现》 这本书的介绍吧!