内容简介:系列文章:直接通过 Spring 官方提供的
系列文章:
- 《 大白话带你认识 Kafka 》
- 《 5 分钟带你体验一把 Kafka 》
Step 1:创建项目
直接通过 Spring 官方提供的 Spring Initializr 创建或者直接使用 IDEA 创建皆可。
Step 2:配置 Kafka
通过 application.yml 配置文件配置 Kafka 基本信息。
server: port: 9090 spring: kafka: consumer: bootstrap-servers: localhost:9092 # 配置消费者消息 offset 是否自动重置(消费者重连会能够接收最开始的消息) auto-offset-reset: earliest producer: bootstrap-servers: localhost:9092 # 发送的对象信息变为 json 格式 value-serializer: org.springframework.kafka.support.serializer.JsonSerializer kafka: topic: my-topic: my-topic my-topic2: my-topic2
Kafka 额外配置类:
package cn.javaguide.springbootkafka01sendobjects.config; import org.apache.kafka.clients.admin.NewTopic; import org.springframework.beans.factory.annotation.Value; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.kafka.support.converter.RecordMessageConverter; import org.springframework.kafka.support.converter.StringJsonMessageConverter; /** * @author shuang.kou */ @Configuration public class KafkaConfig { @Value("${kafka.topic.my-topic}") String myTopic; @Value("${kafka.topic.my-topic2}") String myTopic2; /** * JSON 消息转换器 */ @Bean public RecordMessageConverter jsonConverter() { return new StringJsonMessageConverter(); } /** * 通过注入一个 NewTopic 类型的 Bean 来创建 topic,如果 topic 已存在,则会忽略。 */ @Bean public NewTopic myTopic() { return new NewTopic(myTopic, 2, (short) 1); } @Bean public NewTopic myTopic2() { return new NewTopic(myTopic2, 1, (short) 1); } }
当我们到了这一步之后,你就可以试着运行项目了,运行成功后你会发现 Spring Boot 会为你创建两个 topic:
- my-topic:partition 数为 2,replica 数为 1
- my-topic2:partition 数为 1,replica 数为 1
通过上一节说的:kafka-topics --describe --zookeeper zoo1:2181 命令查看或者直接通过 IDEA 提供的 Kafka 可视化管理插件-Kafkalytic 来查看。
Step 3:创建要发送的消息实体类
package cn.javaguide.springbootkafka01sendobjects.entity; public class Book { private Long id; private String name; public Book() { } public Book(Long id, String name) { this.id = id; this.name = name; } 省略 getter/setter 以及 toString 方法 }
Step 4:创建发送消息的生产者
这一步内容比较长,会一步一步优化生产者的代码。
import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.kafka.core.KafkaTemplate; import org.springframework.stereotype.Service; @Service public class BookProducerService { private static final Logger logger = LoggerFactory.getLogger(BookProducerService.class); private final KafkaTemplate<String, Object> kafkaTemplate; public BookProducerService(KafkaTemplate<String, Object> kafkaTemplate) { this.kafkaTemplate = kafkaTemplate; } public void sendMessage(String topic, Object o) { kafkaTemplate.send(topic, o); } }
我们使用 Kafka 提供的 KafkaTemplate 调用 send() 方法出入要发往的 topic 和消息内容即可很方便的完成消息的发送:
kafkaTemplate.send(topic, o);
如果我们想要知道消息发送的结果的话,sendMessage 方法这样写:
public void sendMessage(String topic, Object o) { try { SendResult<String, Object> sendResult = kafkaTemplate.send(topic, o).get(); if (sendResult.getRecordMetadata() != null) { logger.info("生产者成功发送消息到" + sendResult.getProducerRecord().topic() + "-> " + sendResult.getProducerRecord().value().toString()); } } catch (InterruptedException | ExecutionException e) { e.printStackTrace(); } }
但是这种属于同步的发送方式并不推荐,没有利用到 Future 对象的特性。
KafkaTemplate 调用 send() 方法实际上返回的是 ListenableFuture 对象。
send() 方法源码如下:
@Override public ListenableFuture<SendResult<K, V>> send(String topic, @Nullable V data) { ProducerRecord<K, V> producerRecord = new ProducerRecord<>(topic, data); return doSend(producerRecord); }
ListenableFuture 是 Spring 提供了继承自 Future 的接口。
ListenableFuture 方法源码如下:
public interface ListenableFuture<T> extends Future<T> { void addCallback(ListenableFutureCallback<? super T> var1); void addCallback(SuccessCallback<? super T> var1, FailureCallback var2); default CompletableFuture<T> completable() { CompletableFuture<T> completable = new DelegatingCompletableFuture(this); this.addCallback(completable::complete, completable::completeExceptionally); return completable; } }
继续优化 sendMessage 方法:
public void sendMessage(String topic, Object o) { ListenableFuture<SendResult<String, Object>> future = kafkaTemplate.send(topic, o); future.addCallback(new ListenableFutureCallback<SendResult<String, Object>>() { @Override public void onSuccess(SendResult<String, Object> sendResult) { logger.info("生产者成功发送消息到" + topic + "-> " + sendResult.getProducerRecord().value().toString()); } @Override public void onFailure(Throwable throwable) { logger.error("生产者发送消息:{} 失败,原因:{}", o.toString(), throwable.getMessage()); } }); }
使用 lambda 表达式再继续优化:
public void sendMessage(String topic, Object o) { ListenableFuture<SendResult<String, Object>> future = kafkaTemplate.send(topic, o); future.addCallback(result -> logger.info("生产者成功发送消息到 topic:{} partition:{} 的消息", result.getRecordMetadata().topic(), result.getRecordMetadata().partition()), ex -> logger.error("生产者发送消失败,原因:{}", ex.getMessage())); }
再来简单研究一下 send(String topic, @Nullable V data) 方法。
我们使用 send(String topic, @Nullable V data) 方法的时候实际会 new 一个 ProducerRecord 对象发送。
@Override public ListenableFuture<SendResult<K, V>> send(String topic, @Nullable V data) { ProducerRecord<K, V> producerRecord = new ProducerRecord<>(topic, data); return doSend(producerRecord); }
ProducerRecord 类中有多个构造方法:
public ProducerRecord(String topic, V value) { this(topic, null, null, null, value, null); } public ProducerRecord(String topic, Integer partition, Long timestamp, K key, V ...... }
如果我们想在发送的时候带上 timestamp(时间戳)、key 等信息的话,sendMessage() 方法可以这样写:
public void sendMessage(String topic, Object o) { // 分区编号最好为 null,交给 kafka 自己去分配 ProducerRecord<String, Object> producerRecord = new ProducerRecord<>(topic, null, System.currentTimeMillis(), String.valueOf(o.hashCode()), o); ListenableFuture<SendResult<String, Object>> future = kafkaTemplate.send(producerRecord); future.addCallback(result -> logger.info("生产者成功发送消息到topic:{} partition:{}的消息", result.getRecordMetadata().topic(), result.getRecordMetadata().partition()), ex -> logger.error("生产者发送消失败,原因:{}", ex.getMessage())); }
Step 5:创建消费消息的消费者
通过在方法上使用 @KafkaListener 注解监听消息,当有消息的时候就会通过 poll 下来消费。
import cn.javaguide.springbootkafka01sendobjects.entity.Book; import com.fasterxml.jackson.core.JsonProcessingException; import com.fasterxml.jackson.databind.ObjectMapper; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.beans.factory.annotation.Value; import org.springframework.kafka.annotation.KafkaListener; import org.springframework.stereotype.Service; @Service public class BookConsumerService { @Value("${kafka.topic.my-topic}") private String myTopic; @Value("${kafka.topic.my-topic2}") private String myTopic2; private final Logger logger = LoggerFactory.getLogger(BookProducerService.class); private final ObjectMapper objectMapper = new ObjectMapper(); @KafkaListener(topics = {"${kafka.topic.my-topic}"}, groupId = "group1") public void consumeMessage(ConsumerRecord<String, String> bookConsumerRecord) { try { Book book = objectMapper.readValue(bookConsumerRecord.value(), Book.class); logger.info("消费者消费topic:{} partition:{}的消息 -> {}", bookConsumerRecord.topic(), bookConsumerRecord.partition(), book.toString()); } catch (JsonProcessingException e) { e.printStackTrace(); } } @KafkaListener(topics = {"${kafka.topic.my-topic2}"}, groupId = "group2") public void consumeMessage2(Book book) { logger.info("消费者消费{}的消息 -> {}", myTopic2, book.toString()); } }
Step 6:创建一个 Rest Controller
import cn.javaguide.springbootkafka01sendobjects.entity.Book; import cn.javaguide.springbootkafka01sendobjects.service.BookProducerService; import org.springframework.beans.factory.annotation.Value; import org.springframework.web.bind.annotation.PostMapping; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.bind.annotation.RestController; import java.util.concurrent.atomic.AtomicLong; /** * @author shuang.kou */ @RestController @RequestMapping(value = "/book") public class BookController { @Value("${kafka.topic.my-topic}") String myTopic; @Value("${kafka.topic.my-topic2}") String myTopic2; private final BookProducerService producer; private AtomicLong atomicLong = new AtomicLong(); BookController(BookProducerService producer) { this.producer = producer; } @PostMapping public void sendMessageToKafkaTopic(@RequestParam("name") String name) { this.producer.sendMessage(myTopic, new Book(atomicLong.addAndGet(1), name)); this.producer.sendMessage(myTopic2, new Book(atomicLong.addAndGet(1), name)); } }
Step 7:测试
输入命令:
curl -X POST -F 'name=Java' http://localhost:9090/book
控制台打印出的效果如下:
my-topic 有 2个 partition(分区)当你尝试发送多条消息的时候,你会发现消息会被比较均匀地发送到每个 partion 中。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 如何把MongoDB作为循环队列
- 使用Redis作为消息队列实现生产消费与发布订阅
- 使用Elasticsearch作为主数据存储
- 使用 utterances 作为博客评论组件
- 作为项目经理应该串联起哪些流程
- 作为产品经理,如何做好项目管理?
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。