一口气说出 9种 分布式ID生成方式,面试官有点懵了

栏目: IT技术 · 发布时间: 4年前

内容简介:一、为什么要用分布式ID?在说分布式ID的具体实现之前,我们来简单分析一下为什么用分布式ID?分布式ID应该满足哪些特征?

一、为什么要用分布式ID?

在说分布式ID的具体实现之前,我们来简单分析一下为什么用分布式ID?分布式ID应该满足哪些特征?

1、什么是分布式ID?

MySQL 数据库举个栗子:

在我们业务数据量不大的时候,单库单表完全可以支撑现有业务,数据再大一点搞个MySQL主从同步读写分离也能对付。

但随着数据日渐增长,主从同步也扛不住了,就需要对数据库进行分库分表,但分库分表后需要有一个唯一ID来标识一条数据,数据库的自增ID显然不能满足需求;特别一点的如订单、优惠券也都需要有 唯一ID 做标识。此时一个能够生成 全局唯一ID 的系统是非常必要的。那么这个 全局唯一ID 就叫 分布式ID

2、那么分布式ID需要满足那些条件?

  • 全局唯一:必须保证ID是全局性唯一的,基本要求

  • 高性能:高可用低延时,ID生成响应要块,否则反倒会成为业务瓶颈

  • 高可用:100%的可用性是骗人的,但是也要无限接近于100%的可用性

  • 好接入:要秉着拿来即用的设计原则,在系统设计和实现上要尽可能的简单

  • 趋势递增:最好趋势递增,这个要求就得看具体业务场景了,一般不严格要求

二、 分布式ID都有哪些生成方式?

今天主要分析一下以下9种,分布式ID生成器方式以及优缺点:

  • UUID

  • 数据库自增ID

  • 数据库多主模式

  • 号段模式

  • Redis

  • 雪花算法(SnowFlake)

  • 滴滴出品(TinyID)

  • 百度 (Uidgenerator)

  • 美团(Leaf)

那么它们都是如何实现?以及各自有什么优缺点?我们往下看

一口气说出 9种 分布式ID生成方式,面试官有点懵了
图片源自网络

以上图片源自网络,如有侵权联系删除

1、基于UUID

Java 的世界里,想要得到一个具有唯一性的ID,首先被想到可能就是 UUID ,毕竟它有着全球唯一的特性。那么 UUID 可以做 分布式ID 吗? 答案是可以的,但是并不推荐!

public static void main(String[] args) { 
String uuid = UUID.randomUUID().toString().replaceAll("-","");
System.out.println(uuid);
}

UUID 的生成简单到只有一行代码,输出结果  c2b8c2b9e46c47e3b30dca3b0d447718 ,但UUID却并不适用于实际的业务需求。像用作订单号 UUID 这样的字符串没有丝毫的意义,看不出和订单相关的有用信息;而对于数据库来说用作业务 主键ID ,它不仅是太长还是字符串,存储性能差查询也很耗时,所以不推荐用作 分布式ID

优点:

  • 生成足够简单,本地生成无网络消耗,具有唯一性

缺点:

  • 无序的字符串,不具备趋势自增特性

  • 没有具体的业务含义

  • 长度过长16 字节128位,36位长度的字符串,存储以及查询对MySQL的性能消耗较大,MySQL官方明确建议主键要尽量越短越好,作为数据库主键  UUID  的无序性会导致数据位置频繁变动,严重影响性能。

2、基于数据库自增ID

基于数据库的 auto_increment 自增ID完全可以充当 分布式ID ,具体实现:需要一个单独的MySQL实例用来生成ID,建表结构如下:

CREATE DATABASE `SEQ_ID`;
CREATE TABLE SEQID.SEQUENCE_ID (
id bigint(20) unsigned NOT NULL auto_increment,
value char(10) NOT NULL default '',
PRIMARY KEY (id),
) ENGINE=MyISAM;
insert into SEQUENCE_ID(value)  VALUES ('values');

当我们需要一个ID的时候,向表中插入一条记录返回 主键ID ,但这种方式有一个比较致命的缺点,访问量激增时MySQL本身就是系统的瓶颈,用它来实现分布式服务风险比较大,不推荐!

优点:

  • 实现简单,ID单调自增,数值类型查询速度快

缺点:

  • DB单点存在宕机风险,无法扛住高并发场景

3、基于数据库集群模式

前边说了单点数据库方式不可取,那对上边的方式做一些高可用优化,换成主从模式集群。害怕一个主节点挂掉没法用,那就做双主模式集群,也就是两个Mysql实例都能单独的生产自增ID。

那这样还会有个问题,两个MySQL实例的自增ID都从1开始, 会生成重复的ID怎么办?

解决方案 :设置 起始值 自增步长

MySQL_1 配置:

set @@auto_increment_offset = 1;     -- 起始值
set @@auto_increment_increment = 2; -- 步长

MySQL_2 配置:

set @@auto_increment_offset = 2;     -- 起始值
set @@auto_increment_increment = 2; -- 步长

这样两个MySQL实例的自增ID分别就是:

1、3、5、7、9 
2、4、6、8、10

那如果集群后的性能还是扛不住高并发咋办?就要进行MySQL扩容增加节点,这是一个比较麻烦的事。

一口气说出 9种 分布式ID生成方式,面试官有点懵了
在这里插入图片描述

从上图可以看出,水平扩展的数据库集群,有利于解决数据库单点压力的问题,同时为了ID生成特性,将自增步长按照机器数量来设置。

增加第三台 MySQL 实例需要人工修改一、二两台 MySQL实例 的起始值和步长,把 第三台机器的ID 起始生成位置设定在比现有 最大自增ID 的位置远一些,但必须在一、二两台 MySQL实例 ID还没有增长到 第三台MySQL实例 起始ID 值的时候,否则 自增ID 就要出现重复了, 必要时可能还需要停机修改

优点:

  • 解决DB单点问题

缺点:

  • 不利于后续扩容,而且实际上单个数据库自身压力还是大,依旧无法满足高并发场景。

4、基于数据库的号段模式

号段模式是当下分布式ID生成器的主流实现方式之一,号段模式可以理解为从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,具体的业务服务将本号段,生成1~1000的自增ID并加载到内存。表结构如下:

CREATE TABLE id_generator (
id int(10) NOT NULL,
max_id bigint(20) NOT NULL COMMENT '当前最大id',
step int(20) NOT NULL COMMENT '号段的布长',
biz_type int(20) NOT NULL COMMENT '业务类型',
version int(20) NOT NULL COMMENT '版本号',
PRIMARY KEY (`id`)
)

biz_type :代表不同业务类型

max_id :当前最大的可用id

step :代表号段的长度

version :是一个乐观锁,每次都更新version,保证并发时数据的正确性

id biz_type max_id step version
1 101 1000 2000 0

等这批号段ID用完,再次向数据库申请新号段,对 max_id 字段做一次 update 操作, update max_id= max_id + step ,update成功则说明新号段获取成功,新的号段范围是 (max_id ,max_id +step]

update id_generator set max_id = #{max_id+step}, version = version + 1 where version = # {version} and biz_type = XXX

由于多业务端可能同时操作,所以采用版本号 version 乐观锁方式更新,这种 分布式ID 生成方式不强依赖于数据库,不会频繁的访问数据库,对数据库的压力小很多。

5、基于 Redis 模式

Redis 也同样可以实现,原理就是利用 redis 的  incr 命令实现ID的原子性自增。

127.0.0.1:6379> set seq_id 1     // 初始化自增ID为1
OK
127.0.0.1:6379> incr seq_id // 增加1,并返回递增后的数值
(integer) 2

redis 实现需要注意一点,要考虑到redis持久化的问题。 redis 有两种持久化方式 RDB AOF

  • RDB 会定时打一个快照进行持久化,假如连续自增但 redis 没及时持久化,而这会Redis挂掉了,重启Redis后会出现ID重复的情况。

  • AOF 会对每条写命令进行持久化,即使 Redis 挂掉了也不会出现ID重复的情况,但由于incr命令的特殊性,会导致 Redis 重启恢复的数据时间过长。

6、基于雪花算法(Snowflake)模式

雪花算法(Snowflake)是twitter公司内部分布式项目采用的ID生成算法,开源后广受国内大厂的好评,在该算法影响下各大公司相继开发出各具特色的分布式生成器。

一口气说出 9种 分布式ID生成方式,面试官有点懵了
在这里插入图片描述

以上图片源自网络,如有侵权联系删除

Snowflake 生成的是Long类型的ID,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特。

Snowflake ID组成结构: 正数位 (占1比特)+  时间戳 (占41比特)+  机器ID (占5比特)+  数据中心 (占5比特)+  自增值 (占12比特),总共64比特组成的一个Long类型。

  • 第一个bit位(1bit):Java中long的最高位是符号位代表正负,正数是0,负数是1,一般生成ID都为正数,所以默认为0。

  • 时间戳部分(41bit):毫秒级的时间,不建议存当前时间戳,而是用(当前时间戳 - 固定开始时间戳)的差值,可以使产生的ID从更小的值开始;41位的时间戳可以使用69年,(1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69年

  • 工作机器id(10bit):也被叫做 workId ,这个可以灵活配置,机房或者机器号组合都可以。

  • 序列号部分(12bit),自增值支持同一毫秒内同一个节点可以生成4096个ID

根据这个算法的逻辑,只需要将这个算法用Java语言实现出来,封装为一个 工具 方法,那么各个业务应用可以直接使用该工具方法来获取分布式ID,只需保证每个业务应用有自己的工作机器id即可,而不需要单独去搭建一个获取分布式ID的应用。

Java版本的 Snowflake 算法实现:

/**
* Twitter的SnowFlake算法,使用SnowFlake算法生成一个整数,然后转化为62进制变成一个短地址URL
*
* https://github.com/beyondfengyu/SnowFlake
*/

public class SnowFlakeShortUrl {

/**
* 起始的时间戳
*/

private final static long START_TIMESTAMP = 1480166465631L;

/**
* 每一部分占用的位数
*/

private final static long SEQUENCE_BIT = 12; //序列号占用的位数
private final static long MACHINE_BIT = 5; //机器标识占用的位数
private final static long DATA_CENTER_BIT = 5; //数据中心占用的位数

/**
* 每一部分的最大值
*/

private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
private final static long MAX_DATA_CENTER_NUM = -1L ^ (-1L << DATA_CENTER_BIT);

/**
* 每一部分向左的位移
*/

private final static long MACHINE_LEFT = SEQUENCE_BIT;
private final static long DATA_CENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
private final static long TIMESTAMP_LEFT = DATA_CENTER_LEFT + DATA_CENTER_BIT;

private long dataCenterId; //数据中心
private long machineId; //机器标识
private long sequence = 0L; //序列号
private long lastTimeStamp = -1L; //上一次时间戳

private long getNextMill() {
long mill = getNewTimeStamp();
while (mill <= lastTimeStamp) {
mill = getNewTimeStamp();
}
return mill;
}

private long getNewTimeStamp() {
return System.currentTimeMillis();
}

/**
* 根据指定的数据中心ID和机器标志ID生成指定的序列号
*
* @param dataCenterId 数据中心ID
* @param machineId 机器标志ID
*/

public SnowFlakeShortUrl(long dataCenterId, long machineId) {
if (dataCenterId > MAX_DATA_CENTER_NUM || dataCenterId < 0) {
throw new IllegalArgumentException("DtaCenterId can't be greater than MAX_DATA_CENTER_NUM or less than 0!");
}
if (machineId > MAX_MACHINE_NUM || machineId < 0) {
throw new IllegalArgumentException("MachineId can't be greater than MAX_MACHINE_NUM or less than 0!");
}
this.dataCenterId = dataCenterId;
this.machineId = machineId;
}

/**
* 产生下一个ID
*
* @return
*/

public synchronized long nextId() {
long currTimeStamp = getNewTimeStamp();
if (currTimeStamp < lastTimeStamp) {
throw new RuntimeException("Clock moved backwards. Refusing to generate id");
}

if (currTimeStamp == lastTimeStamp) {
//相同毫秒内,序列号自增
sequence = (sequence + 1) & MAX_SEQUENCE;
//同一毫秒的序列数已经达到最大
if (sequence == 0L) {
currTimeStamp = getNextMill();
}
} else {
//不同毫秒内,序列号置为0
sequence = 0L;
}

lastTimeStamp = currTimeStamp;

return (currTimeStamp - START_TIMESTAMP) << TIMESTAMP_LEFT //时间戳部分
| dataCenterId << DATA_CENTER_LEFT //数据中心部分
| machineId << MACHINE_LEFT //机器标识部分
| sequence; //序列号部分
}

public static void main(String[] args) {
SnowFlakeShortUrl snowFlake = new SnowFlakeShortUrl(2, 3);

for (int i = 0; i < (1 << 4); i++) {
//10进制
System.out.println(snowFlake.nextId());
}
}
}

7、百度(uid-generator)

uid-generator 是由百度技术部开发,项目GitHub地址 https://github.com/baidu/uid-generator

uid-generator 是基于 Snowflake 算法实现的,与原始的 snowflake 算法不同在于, uid-generator 支持自 定义时间戳 工作机器ID 和  序列号  等各部分的位数,而且 uid-generator 中采用用户自定义 workId 的生成策略。

uid-generator 需要与数据库配合使用,需要新增一个 WORKER_NODE 表。当应用启动时会向数据库表中去插入一条数据,插入成功后返回的自增ID就是该机器的 workId 数据由host,port组成。

对于 uid-generator  ID组成结构

workId ,占用了22个bit位,时间占用了28个bit位,序列化占用了13个bit位,需要注意的是,和原始的 snowflake 不太一样,时间的单位是秒,而不是毫秒, workId 也不一样,而且同一应用每次重启就会消费一个 workId

参考文献
https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md

8、美团(Leaf)

Leaf 由美团开发,github地址:https://github.com/Meituan-Dianping/Leaf

Leaf 同时支持号段模式和 snowflake 算法模式,可以切换使用。

号段模式

先导入源码 https://github.com/Meituan-Dianping/Leaf ,在建一张表 leaf_alloc

DROP TABLE IF EXISTS `leaf_alloc`;

CREATE TABLE `leaf_alloc` (
`biz_tag` varchar(128) NOT NULL DEFAULT '' COMMENT '业务key',
`max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id',
`step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长',
`description` varchar(256) DEFAULT NULL COMMENT '业务key的描述',
`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据库维护的更新时间',
PRIMARY KEY (`biz_tag`)
) ENGINE=InnoDB;

然后在项目中开启 号段模式 ,配置对应的数据库信息,并关闭 snowflake 模式

leaf.name=com.sankuai.leaf.opensource.test
leaf.segment.enable=true
leaf.jdbc.url=jdbc:mysql://localhost:3306/leaf_test?useUnicode=true&characterEncoding=utf8&characterSetResults=utf8
leaf.jdbc.username=root
leaf.jdbc.password=root

leaf.snowflake.enable=false
#leaf.snowflake.zk.address=
#leaf.snowflake.port=

启动 leaf-server  模块的  LeafServerApplication 项目就跑起来了

号段模式获取分布式自增ID的测试url :http://localhost:8080/api/segment/get/leaf-segment-test

监控号段模式:http://localhost:8080/cache

snowflake模式

Leaf 的snowflake模式依赖于 ZooKeeper ,不同于 原始snowflake 算法也主要是在 workId 的生成上, Leaf workId 是基于 ZooKeeper 的顺序Id来生成的,每个应用在使用 Leaf-snowflake 时,启动时都会都在 Zookeeper 中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个 workId

leaf.snowflake.enable=true
leaf.snowflake.zk.address=127.0.0.1
leaf.snowflake.port=2181

snowflake模式获取分布式自增ID的测试url:http://localhost:8080/api/snowflake/get/test

9、滴滴(Tinyid)

Tinyid 由滴滴开发,Github地址:https://github.com/didi/tinyid。

Tinyid 是基于号段模式原理实现的与 Leaf 如出一辙,每个服务获取一个号段(1000,2000]、(2000,3000]、(3000,4000]

一口气说出 9种 分布式ID生成方式,面试官有点懵了
在这里插入图片描述

Tinyid 提供 http tinyid-client 两种方式接入

Http方式接入

(1)导入Tinyid源码:

git clone https://github.com/didi/tinyid.git

(2)创建数据表:

CREATE TABLE `tiny_id_info` (
`id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增主键',
`biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '业务类型,唯一',
`begin_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '开始id,仅记录初始值,无其他含义。初始化时begin_id和max_id应相同',
`max_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '当前最大id',
`step` int(11) DEFAULT '0' COMMENT '步长',
`delta` int(11) NOT NULL DEFAULT '1' COMMENT '每次id增量',
`remainder` int(11) NOT NULL DEFAULT '0' COMMENT '余数',
`create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',
`update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',
`version` bigint(20) NOT NULL DEFAULT '0' COMMENT '版本号',
PRIMARY KEY (`id`),
UNIQUE KEY `uniq_biz_type` (`biz_type`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'id信息表';

CREATE TABLE `tiny_id_token` (
`id` int(11) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增id',
`token` varchar(255) NOT NULL DEFAULT '' COMMENT 'token',
`biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '此token可访问的业务类型标识',
`remark` varchar(255) NOT NULL DEFAULT '' COMMENT '备注',
`create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',
`update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'token信息表';

INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`)
VALUES
(1, 'test', 1, 1, 100000, 1, 0, '2018-07-21 23:52:58', '2018-07-22 23:19:27', 1);

INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`)
VALUES
(2, 'test_odd', 1, 1, 100000, 2, 1, '2018-07-21 23:52:58', '2018-07-23 00:39:24', 3);


INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`)
VALUES
(1, '0f673adf80504e2eaa552f5d791b644c', 'test', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');

INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`)
VALUES
(2, '0f673adf80504e2eaa552f5d791b644c', 'test_odd', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');

(3)配置数据库:

datasource.tinyid.names=primary
datasource.tinyid.primary.driver-class-name=com.mysql.jdbc.Driver
datasource.tinyid.primary.url=jdbc:mysql://ip:port/databaseName?autoReconnect=true&useUnicode=true&characterEncoding=UTF-8
datasource.tinyid.primary.username=root
datasource.tinyid.primary.password=123456

(4)启动 tinyid-server 后测试

获取分布式自增ID: http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c'
返回结果: 3

批量获取分布式自增ID:
http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c&batchSize=10'
返回结果: 4,5,6,7,8,9,10,11,12,13

Java客户端方式接入

重复Http方式的(2)(3)操作

引入依赖

       <dependency>
<groupId>com.xiaoju.uemc.tinyid</groupId>
<artifactId>tinyid-client</artifactId>
<version>${tinyid.version}</
version>
</dependency>

配置文件

tinyid.server =localhost:9999
tinyid.token =0f673adf80504e2eaa552f5d791b644c

test  、 tinyid.token 是在数据库表中预先插入的数据, test  是具体业务类型, tinyid.token 表示可访问的业务类型

// 获取单个分布式自增ID
Long id = TinyId . nextId( " test " );

// 按需批量分布式自增ID
List< Long > ids = TinyId . nextId( " test " , 10 );

总结

本文只是简单介绍一下每种分布式ID生成器,旨在给大家一个详细学习的方向,每种生成方式都有它自己的优缺点,具体如何使用还要看具体的业务需求。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

重构

重构

Martin Fowler / 熊节 / 人民邮电出版社 / 2010 / 69.00元

重构,一言以蔽之,就是在不改变外部行为的前提下,有条不紊地改善代码。多年前,正是本书原版的出版,使重构终于从编程高手们的小圈子走出,成为众多普通程序员日常开发工作中不可或缺的一部分。本书也因此成为与《设计模式》齐名的经典著作,被译为中、德、俄、日等众多语言,在世界范围内畅销不衰。 本书凝聚了软件开发社区专家多年摸索而获得的宝贵经验,拥有不因时光流逝而磨灭的价值。今天,无论是重构本身,业界对重......一起来看看 《重构》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具