内容简介:基于对自适应网络的研究,论文提出了自适应网络RANet(Resolution Adaptive Network)来进行效果与性能上的取舍,该网络包含多个不同输入分辨率和深度的子网,难易样本的推理会自动使用不同的计算量,并且子网间的特征会进行融合,从实验结果来看,在性能和速度上取得了很不错的trade-off来源:晓飞的算法工程笔记 公众号
基于对自适应网络的研究,论文提出了自适应网络RANet(Resolution Adaptive Network)来进行效果与性能上的取舍,该网络包含多个不同输入分辨率和深度的子网,难易样本的推理会自动使用不同的计算量,并且子网间的特征会进行融合,从实验结果来看,在性能和速度上取得了很不错的trade-off
来源:晓飞的算法工程笔记 公众号
论文: Resolution Adaptive Networks for Efficient Inference
Introduction
深度CNN带来了性能提升的同时也带来了过高的计算量,许多研究放在了如何进行网络加速上面,其中比较直接的是根据样本难易程度进行自动调整的自适应网络。基于对自适应网络的研究,论文提出了自适应网络RANet(Resolution Adaptive Network),思想如图1所示,网络包含多个不同输入分辨率和深度子网,样本先从最小的子网开始识别,若结果满足条件则退出,否则继续使用更大的子网进行识别,子网的特征不是独有的,下一级别的子网会融合上一级别的子网特征,从实验来看,论文在效果和性能上取得了很不错的trade-off。
Method
Adaptive Inference Setting
构建包含K个分类器的自适应模型,对于输入图片$x$,第$k$个分类器的输出如公式1,$\theta_k$为分类器对应的子网参数,部分参数是分类器间共享的,$p_c^k\in [0, 1]$为$c$类别置信度。
自适应网络根据图片的复杂程度动态选择合适的计算分支,即若当前分类器的输出达到预期,则退出,论文采用softmax输出的置信度来进行判断,如公式2和公式3所示
Overall Architecture
RANet的整体结构如图2所示,包含初始层(Initial Layer)和$H$个对应不同分辨率的子网,每个子网包含多个分类器。具体流程先使用初始层获得不同分辨率的特征图,然后使用最低分辨率的子网进行预测,如果子网没有获得可靠的结果,则使用下一个分辨率稍大的子网进行预测,重复直到获得可靠的结果或者到达最大分辨率子网。
在重复迭代预测的过程中,高分辨率层会融合低分辨率层的特征。尽管RANet已经在初始层对图片进行了从细粒度到粗粒度的处理,子网仍然会继续对其进行下采样,直到特征图大小为$s=1$ scale(表示初始层产生的最小分辨率),分类器只加在最后几个特征图大小$s=1$ scale的block上。
Network Details
-
Initial Layer
初始层用于生成$H$个基础特征,特征有$S$个尺寸,图2的初始层包含3个不同尺寸的特征,第一个特征通过Regular-Conv层产生,后面的特征通过Strided-Conv层产生
-
Sub-networks with Different Scales
Sub-network 1处理分辨率最低的特征图$x_0^{1,1}$,使用图3(a)的$l$层regular Dense Blocks,每层的输出$x_i^{1,1}$都将传递到Sub-network 2中
输入大小为$s$ scale的Sub-network $h$($h>1$)处理基础特征$x^{s,h}$,并且使用图3(b,c)的Fusion Blocks来融合自Sub-network ($h-1$)的特征,包含两种类型,一种为图3b的保持特征图大小的类型,另一种为图3c的降低特征图大小类型。对于低维特征的上采样视当前特征的大小使用Up-Conv(Regular-Conv+Bilinear interpolation)或Regular-Conv,对于前后特征也会进行连接,具体结构细节见图3。
对于输入为$s$ scale的Sub-network $h$的建立如下:假设$h$子网包含$b_h$ blocks,block 1至 block $b_{h-1}(b_{h-1} < b_{h})$为Fusion Blocks,特征会下采样$s$次,保证输出的特征图为$s=1$ scale进行分类,剩余的block为regular Dense Blocks。
-
Transition layer
RANet也使用了DeseNet稠密的transition layer,具体为$1\times 1$卷积+BN+ReLU,为了简单没有在图2体现
-
Classifiers and loss function
分类器加在每个子网的后几个block中,在训练阶段,样本会按顺序传给所有的子网,最终的损失是每个分类器计算交叉熵损失加权累积,具体逻辑和权重跟MSDNet一样
Resolution and Depth Adaptation
RANet的整体结构和MSDNet十分类似,论文与其进行了对比,MSDNet的分类器放到分辨率最低的路径中,如果中间的分类器没有得到符合预期的结果,则会进行下一步全部尺寸的推理预测。而RANet则是从低尺寸到高尺寸逐步使用不同的子网进行推理预测,这样的方式能更好地自适应结合深度和分辨率。
Experiments
Anytime Prediction
限制单图的计算量FLOPs,直接记录自适应网络中所有分类器的性能以及其计算量进行对比
Budgeted Batch Classification
限制一批图片的资源总量,需要根据资源总量设定阈值来控制推理的提前退出,记录自适应网络的性能以及对应的资源限制
Visualization and Discussion
图7展示了RANet识别的一些样例,easy为前阶段的分类器能识别成的样本,hard为前阶段识别失败,但后阶段能识别成功的样本,主要的挑战为多目标、小目标和类间特征不明显的物体
Conclusion
基于对自适应网络的研究,论文提出了自适应网络RANet(Resolution Adaptive Network)来进行效果与性能上的取舍,该网络包含多个不同输入分辨率和深度的子网,难易样本的推理会自动使用不同的计算量,并且子网间的特征会进行融合,从实验结果来看,在性能和速度上取得了很不错的trade-off
参考内容
- MSD: Multi-Self-Distillation Learning via Multi-classifiers within Deep Neural Networks - https://arxiv.org/abs/1911.09418
如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- CVPR 2019 | 告别低分辨率网络,微软提出高分辨率深度神经网络HRNet
- Flutter图片分辨率适配
- Kali Linux 自定义分辨率
- 人脸超分辨率,基于迭代合作的方法
- 基于深度学习的图像超分辨率重建
- 浅谈AI视频技术超分辨率
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Twenty Lectures on Algorithmic Game Theory
Tim Roughgarden / Cambridge University Press / 2016-8-31 / USD 34.99
Computer science and economics have engaged in a lively interaction over the past fifteen years, resulting in the new field of algorithmic game theory. Many problems that are central to modern compute......一起来看看 《Twenty Lectures on Algorithmic Game Theory》 这本书的介绍吧!