内容简介:雷锋网 AI 科技评论:ICLR 2020 正在进行,但总结笔记却相继出炉。我们曾对 ICLR 2020 上的图机器学习趋势进行介绍,本文考虑的主题为知识图谱。作者做波恩大学2018级博士生 Michael Galkin,研究方向为知识图和对话人工智能。在AAAI 2020 举办之际,他也曾对发表在AAAI 2020上知识图谱相关的文章做了全方位的分析,具体可见「知识图谱@AAAI2020」。
雷锋网 AI 科技评论:ICLR 2020 正在进行,但总结笔记却相继出炉。我们曾对 ICLR 2020 上的图机器学习趋势进行介绍,本文考虑的主题为知识图谱。
作者做波恩大学2018级博士生 Michael Galkin,研究方向为知识图和对话人工智能。在AAAI 2020 举办之际,他也曾对发表在AAAI 2020上知识图谱相关的文章做了全方位的分析,具体可见「知识图谱@AAAI2020」。
本文从五个角度,分别介绍了 ICLR 2020上知识图谱相关的 14 篇论文。五个角度分别为:
1)在复杂QA中利用知识图谱进行神经推理(Neural Reasoning for Complex QA with KGs)
2)知识图谱增强的语言模型(KG-augmented Language Models)
3)知识图谱嵌入:循序推理和归纳推理(KG Embeddings: Temporal and Inductive Inference)
4)用GNN做实体匹配(Entity Matching with GNNs)
5)角色扮演游戏中的知识图谱(Bonus: KGs in Text RPGs!)
话不多说,我们来看具体内容。
注:文中涉及论文,可关注「AI科技评论」微信公众号,并后台回复「知识图谱@ICLR2020」打包下载。
一、在复杂QA中利用知识图谱进行神经推理
今年ICLR2020中,在复杂QA和推理任务中看到越来越多的研究和数据集,very good。去年我们只看到一系列关于multi-hop阅读理解数据集的工作,而今年则有大量论文致力于研究语义合成性(compositionality)和逻辑复杂性(logical complexity)——在这些方面,知识图谱能够帮上大忙。
1、Measuring Compositional Generalization: A Comprehensive Method on Realistic Data
文章链接:https://openreview.net/pdf?id=SygcCnNKwr
Keysers等人研究了如何测量QA模型的成分泛化,即训练和测试 split 对同一组实体(广泛地来讲,逻辑原子)进行操作,但是这些原子的成分不同。作者设计了一个新的大型KGQA数据集 CFQ(组合式 Freebase 问题),其中包含约240k 个问题和35K SPARQL查询模式。
Intuition behind the construction process of CFQ. Source: Google blog
这里比较有意思的观点包括:1)用EL Description Logic 来注释问题(在2005年前后,DL的意思是Description Logic,而不是Deep Learning );2)由于数据集指向语义解析,因此所有问题都链接到了Freebase ID(URI),因此您无需插入自己喜欢的实体链接系统(例如ElasticSearch)。于是模型就可以更专注于推断关系及其组成;3)问题可以具有多个级别的复杂性(主要对应于基本图模式的大小和SPARQL查询的过滤器)。
作者将LSTM和Transformers基线应用到该任务,发现它们都没有遵循通用标准(并相应地建立训练/验证/测试拆分):准确性低于20%!对于KGQA爱好者来说,这是一个巨大的挑战,因此我们需要新的想法。
2、Scalable Neural Methods for Reasoning With a Symbolic Knowledge Base
文章链接:https://openreview.net/pdf?id=BJlguT4YPr
Cohen等人延续了神经查询语言(Neural Query Language,NQL)和可微分知识库议程的研究,并提出了一种在大规模知识库中进行神经推理的方法。
作者引入了Reified KB。其中事实以稀疏矩阵(例如COO格式)表示,方式则是对事实进行编码需要六个整数和三个浮点数(比典型的200浮点KG嵌入要少得多)。然后,作者在适用于多跳推理的邻域上定义矩阵运算。
这种有效的表示方式允许将巨大的KG直接存储在GPU内存中,例如,包含1300万实体和4300万事实(facts)的WebQuestionsSP 的 Freebase转储,可以放到三个12-Gb 的 GPU中。而且,在进行QA时可以对整个图谱进行推理,而不是生成候选对象(通常这是外部不可微操作)。
作者在文章中对ReifiedKB进行了一些KGQA任务以及链接预测任务的评估。与这些任务当前的SOTA方法相比,它的执行效果非常好。
事实上,这项工作作为一个案例,也说明SOTA不应该成为一篇论文是否被接收的衡量标准,否则我们就错失了这些新的概念和方法。
3、Differentiable Reasoning over a Virtual Knowledge Base
文章链接: https://openreview.net/pdf?id=SJxstlHFPH
Dhingra等人的工作在概念矿建上与上面Cohen等人的工作类似。他们提出了DrKIT,这是一种能用于在索引文本知识库上进行差分推理的方法。
DrKIT intuition. Source: Dhingra et al
这个框架看起来可能会有些复杂,我们接下来将它分成几个步骤来说明。
1)首先,给定一个question(可能需要多跳推理),实体链接器会生成一组 entities(下图中的Z0)。
2)使用预先计算的索引(例如TF-IDF)将一组实体扩展为一组mentions(表示为稀疏矩阵A)。
3)在右侧,question 会通过一个类似BERT的编码器,从而形成一个紧密向量。
4)所有mentions 也通过一个类似BERT的编码器进行编码。
5)使用MIPS(Maximum Inner Product Search)算法计算scoring function(用来衡量mentions, entities 和 question相关分数),从而得到Top-k向量。
6)矩阵A乘以Top-K 选项;
7)结果乘以另一个稀疏的共指矩阵B(映射到一个实体)。
这构成了单跳推理步骤,并且等效于在虚拟KB中沿着其关系跟踪提取的实体。输出可以在下一次迭代中进一步使用,因此对N跳任务会重复N次!
此外,作者介绍了一个基于Wikidata的新的插槽填充数据集(采用SLING解析器构造数据集),并在MetaQA、HotpotQA上评估了 DrKIT,总体来说结果非常棒。
4、Learning to Retrieve Reasoning Paths over Wikipedia Graph for Question Answering
文章链接: https://openreview.net/pdf?id=SJgVHkrYDH
Asai等人的工作专注于HotpotQA,他们提出了Recurrent Retriever的结构,这是一种开放域QA的体系结构,能够以可区分的方式学习检索推理路径(段落链)。
Recurrent Retrieval architecture. Source: Asai et al
传统上,RC模型会采用一些现成的检索模型来获取可能的候选者,然后才执行神经读取pipeline。这篇工作则希望让检索具有差异性,从而将整个系统编程端到端的可训练模型。
1)整个Wikipedia(英语)都以图谱的形式组织,其边表示段落和目标页面之间的超链接。例如对于Natural Questions,大小约为3300万个节点,边有2.05亿个。
2)检索部分采用的RNN,初始化为一个隐状态h0,这是对问题 q 和候选段落p编码后获得的。这些候选段落首先通过TF-IDF生成,然后通过图谱中的链接生成。(上图中最左侧)
3)编码(q,p)对的BERT [CLS]令牌会被送到RNN中,RNN会预测下一个相关的段落。
4)一旦RNN产生一个特殊的[EOE]令牌,读取器模块就会获取路径,对其重新 排序 并应用典型的提取例程。
作者采用波束搜索和负采样来增强对嘈杂路径的鲁棒性,并很好地突出了路径中的相关段落。重复检索(Recurrent Retrieval )在HotpotQA的 full Wiki测试设置上的F1分数获得了惊人的73分。这篇工作的代码已发布。
5、Neural Symbolic Reader: Scalable Integration of Distributed and Symbolic Representations for Reading Comprehension
文章链接: https://openreview.net/pdf?id=ryxjnREFwH
6、Neural Module Networks for Reasoning over Text
文章链接: https://openreview.net/pdf?id=SygWvAVFPr
我们接下来谈两篇复杂数字推理的工作。
在数字推理中,你需要对给定的段落执行数学运算(例如计数、排序、算术运算等)才能回答问题。例如:
文本:“……美洲虎队的射手乔什·斯科比成功地射入了48码的射门得分……而内特·凯丁的射手得到了23码的射门得分……”问题:“谁踢出最远的射门得分?”
目前为止,关于这个任务只有两个数据集,DROP(SQuAD样式,段落中至少包含20个数字)和MathQA(问题较短,需要较长的计算链、原理和答案选项)。因此,这个任务的知识图谱并不很多。尽管如此,这仍然是一个有趣的语义解析任务。
在ICLR 2020 上,有两篇这方面的工作。一篇是是Chen 等人的工作,提出了一个神经符号读取器NeRd(Neural Symbolic Reader);另一篇是Gupta等人在神经模块网络NMN(Neural Module Networks)上的工作。
NeRd vs other approaches. Source: Chen et al
两项工作都是由读取器和基于RNN的解码器组成,从预定义的域特定语言(DSL,Domain Specific Language)生成操作(操作符)。从性能上相比,NeRd更胜一筹,原因在于其算符的表达能力更强,解码器在构建组合程序上也更简单。另一方面,NMN使用张量交互对每个运算符进行建模,于是你需要手工制定更多的自定义模块来完成具体任务。
此外,NeRd的作者做了许多努力,为弱监督训练建立了可能的程序集,并采用了带有阈值的Hard EM 算法来过滤掉虚假程序(能够基于错误的程序给出正确答案)。NeRd 在DROP测试集上获得了81.7 的F1 分数,以及78.3 的EM分数。
对NMN进行评估,其中月有25%的DROP数据可通过其模块来回答,在DROP dev测试中获得了77.4 的F1 分数 和74 的EM 分数。
二、知识图谱增强的语言模型
将知识融入语言模型,目前已是大势所趋。
7、Pretrained Encyclopedia: Weakly Supervised Knowledge-Pretrained Language Model
文章链接: https://openreview.net/pdf?id=BJlzm64tDH
今年的ICLR上,Xiong等人在预测[MASK] token之外,提出了一个新的训练目标:需要一个模型来预测entity是否已经被置换。
作者对预训练Wikipedia语料库进行处理,基于超链接,将Wiki的entity表面形式(标签)替换为相同类型的另一个entity。基于P31的「instance of」关系,从wikidata中获取类型信息。如下图所示,在有关Spider-Man的段落中,实体 Marvel Comics 可以替换为 DC Comics。
Pre-training objective of WKLM. Source: Xiong et al
模型的任务是预测实体是否被替换掉了。
WKLM(Weakly Supervised Knowledge-Pretrained Languge Model)使用MLM目标(掩蔽率为5%,而不是BERT的15%)进行预训练,每个数据点使用10个负样本,类似于TransE的训练过程。
作者评估了10个Wikidata关系中的WKLM事实完成性能(fact completion performance),发现其达到了约29 Hits@10的速率,而BERT-large和GPT-2约为16。
随后,作者在性能优于基准的WebQuestions,TriviaQA,Quasar-T和Search-QA数据集上对WKLM进行了微调和评估。
总结一句话,这是一个新颖的、简单的,但却有实质性意义的想法,有大量的实验,也有充分的消融分析。
三、知识图谱嵌入:循序推理和归纳推理
像Wikidata这样的大型知识图谱永远不会是静态的,社区每天都会更新数千个事实(facts),或者是有些事实已经过时,或者是新的事实需要创建新实体。
循序推理。说到时间,如果要列出美国总统,显然triple-base的知识图谱,会把亚当斯和特朗普都列出来。如果不考虑时间的话,是否意味着美国同时有45位总统呢?为了避免这种歧义,你必须绕过纯RDF的限制,要么采用具体化的方式(针对每个具体的歧义进行消除),要么采用更具表现力的模型。例如Wikidata状态模型(Wikidata Statement Model)允许在每个statement中添加限定符,以总统为例,可以将在限定符处放上总统任期的开始时间和结束时间,通过这种方式来表示给定断言为真的时间段。循序知识图谱嵌入算法(Temporal KG Embeddings algorithms)的目标就是够条件这样一个时间感知(time-aware)的知识图谱表示。在知识图谱嵌入中时间维度事实上,只是嵌入字(例如身高、长度、年龄以及其他具有数字或字符串值的关系)的一部分。
归纳推理。大多数现有的知识图谱嵌入算法都在已知所有实体的静态图上运行——所谓的转导设置。当你添加新的节点和边时,就需要从头开始重新计算整个嵌入;但对于具有数百万个节点的大型图来说,这显然不是一个明智的方法。在归纳设置(inductive setup)中,先前看不见的节点可以根据他们之间的关系和邻域进行嵌入。针对这个主题的研究现在不断增加,ICLR 2020 上也有几篇有趣的文章。
8、Tensor Decompositions for Temporal Knowledge Base Completion
文章链接: https://openreview.net/pdf?id=rke2P1BFwS
Lacroix等人使用新的正则化组件扩展了ComplEx嵌入模型,这些正则化组件考虑了嵌入模型中的时间维度。
这项工作非常深刻,具体表现在以下几个方面:1)想法是将连续的时间戳(如年,日及其数值属性)注入到正则化器中;2)作者提出TComplEx,其中所有谓词都具有time属性;提出TNTCompEx,其中对诸如「born in」这样“永久”的属性进行区别对待。实验表明,TNTCompEx的性能更好;3)作者介绍了一个新的大型数据集,该数据集基于Wikidata Statements,但带有开始时间和结束时间限定符,该数据集包含约40万个实体和700万个事实。
Time-aware ComplEx (TNTComplEx) scores. Source: Lacroix et al
上图中,你可以看到这个模型如何对描述法国总统的事实的可能性进行评分:自2017年以来,伊曼纽尔·马克龙的得分更高,而弗朗索瓦·奥朗德在2012–2017年的得分更高。
9、Inductive representation learning on temporal graphs
文章链接: https://openreview.net/pdf?id=rJeW1yHYwH
再进一步,Xu等人提出了临时图注意力机制TGAT(temporal graph attention),用于建模随时间变化的图,包括可以将新的先前未见的节点与新边添加在一起时的归纳设置。其思想是基于经典和声分析中的Bochner定理,时间维度可以用傅里叶变换的时间核来近似。时间嵌入与标准嵌入(例如节点嵌入)串联在一起,并且全部输入到自注意力模块中。
Source: Xu et al
作者将TGAT在具有单关系图(不是KG的多关系图)的标准转导与归纳GNN任务上进行了评估,TGAT显示出了很好的性能提升。个人认为,这个理论应该可以进一步扩展到支持多关系KG。
再回到传统的感应式KG嵌入设置(transductive KG embedding setup):
— GNN?是的!— Multi-多关系?是的!— 建立关系的嵌入?是的!— 适合知识图谱吗?是的!— 适用于节点/图形分类任务吗?是的。
10、Composition-based Multi-Relational Graph Convolutional Networks
文章链接: https://openreview.net/pdf?id=BylA_C4tPr
Vashishth 等人提出的 CompGCN体系结构为你带来了所有这些优点。标准的图卷积网络以及消息传递框架在考虑图时,通常认为边是没有类型的,并且通常不会构建边的嵌入。
知识图谱是多关系图,边的表示对链接预测任务至关重要。对于(Berlin,?,Germany) 的query,你显然是要预测capitalOf,而不是childOf。
在CompGCN中,首先会为输入的 KG 填充反关系(最近已普遍使用)和自循环关系(用来实现GCN的稳定性)。CompGCN采用编码-解码方法,其中图编码器构建节点和边的表示形式,然后解码器生成某些下游任务(如链接预测或节点分类)的分数。
CompGCN intuition. Source: Vashishth et al
节点表示是通过聚集来自相邻节点的消息而获得的,这些消息对传入和传出的边(图中的Wi,Wo以及那些自循环)进行计数,其中交互函数对 (subject, predicate)进行建模。
作者尝试了加法(TransE-style),乘法(DistMult-style)和圆相关(HolE-style)的交互。在汇总节点消息之后,边的表示将通过线性层进行更新。你几乎可以选择任何你喜欢的解码器,作者选择的是 TransE,DistMult 和 ConvE 解码器。CompGCN在链接预测和节点分类任务方面都比R-GCN要好,并且在性能上与其他SOTA模型相当。性能最好的CompGCN是使用带有ConvE解码器的基于循环相关的编码器。
11、Probability Calibration for Knowledge Graph Embedding Models
文章链接: https://openreview.net/pdf?id=S1g8K1BFwS
Last, but not least,Tabacoff和Costabello考虑了KGE模型的概率校准。简单来说,如果你的模型以90%的置信度预测某个事实是正确的,则意味着该模型必须在90%的时间里都是正确的。但是,通常情况并非如此,例如,在下图中,表明TransE倾向于返回较小的概率(有点“悲观”)。
Source: Tabacoff and Costabello
作者采用Brier评分来测量校准,采用Platt缩放和等渗回归来优化校准评分,并提出了在没有给出“hard negatives”的典型链接预测方案中对负样本进行采样的策略。于是,你可以校准KGE模型,并确保它会返回可靠的结果。这是一个非常好的分析,结果表明在一些工业任务上,你可以用KGE模型来提升你对自己算法/产品的信心。
四、用GNN做实体匹配
不同的知识图谱都有他们自己的实体建模的模式,换句话说,不同的属性集合可能只有部分重叠,甚至URLs完全不重叠。例如在Wikidata中Berlin的URL是https://www.wikidata.org/entity/Q64,而DBpedia中Berlin的URL是http://dbpedia.org/resource/Berlin。
如果你有一个由这些异质URL组成的知识图谱,尽管它们两个都是在描述同一个真实的Berlin,但知识图谱中却会将它们视为各自独自的实体;当然你也可以编写/查找自定义映射,以显式的方式将这些URL进行匹配成对,例如开放域知识图谱中经常使用的owl:sameAs谓词。维护大规模知识图谱的映射问题是一个相当繁琐的任务。以前,基于本体的对齐 工具 主要依赖于这种映射来定义实体之间的相似性。但现在,我们有GNNs来自动学习这样的映射,因此只需要一个小的训练集即可。
我们在「知识图谱@AAAI2020」的文章中简要讨论了实体匹配的问题。而在ICLR 2020 中这方面的研究有了新的进展。
12、Deep Graph Matching Consensus
文章链接: https://openreview.net/pdf?id=HyeJf1HKvS
Fey 等人推出了DGMC框架(深度图匹配共识,Deep Graph Matching Consensus),这个框架包括两大阶段:
Deep Graph Matching Consensus intuition. Source: Fey et al
1)两个图,源图(Gs)和目标图(Gt),通过相同的GNN(具有相同的参数,表示为ψ_θ1)获得初始节点嵌入。然后通过乘以节点嵌入,并应用Sinkhorn归一化来获得软对应矩阵S(soft correspondences matrix S)。这里可以使用任何最适合任务的GNN编码器。
2)随后将消息传递(也可以看做是图形着色)应用到邻域(标注为ψ_θ2的网络),最后计算出源节点和目标节点之间的距离(ψ_θ3),这个距离表示邻域共识。
作者对DGMC进行了广泛的任务评估——匹配随机图、匹配目标检测任务的图,以及匹配英、汉、日、法版的DBpedia。有意思的是,DGMC在删除关系类型时,却能产生很好的结果,这说明源KG和目标KG之间基本上是单一关系。
于是引入这样一条疑惑:如果在Hits@10我们已经做到90+%了,真的还需要考虑所有属性类型以及限制语义吗?
13、Learning deep graph matching with channel-independent embedding and Hungarian attention
文章链接: https://openreview.net/pdf?id=rJgBd2NYPH
Yu 等人介绍了他们的深度匹配框架,这个框架具有两个比较鲜明的特征:聚焦在聚合边缘嵌入、引入一个新的匈牙利注意力(Hungarian attention)。匈牙利算法是解决分配问题的经典方法,但它不是可微分的。
作者利用一个黑箱(带有匈牙利注意力)的输出来生成网络结构,然后把这个流进一步地传播。匈牙利注意力的方法,直观来理解一下:
1)初始步骤类似于DGMC,一些图编码器生成节点和边嵌入,且相似矩阵通过Sinkhorn规范化来传递;
2)不同的是,生成矩阵被返回到匈牙利黑箱(而不是像DGMC中那样传递迭代消息),从而生成离散矩阵;
3)通过注意力机制与基准进行比较,获得激活图,然后对其进行处理,从而获得loss。
作者仅在CV基准上进行了评估,但由于匈牙利算法的时间复杂度是O(n³),所以如果能把runtime 也放出来,可能会更有趣。
五、角色扮演游戏中的知识图谱
互动小说游戏(Interactive Fiction games,例如RPG Zork文字游戏)非常有趣,尤其是你探索完世界,然后输入一段话,等待游戏反馈的时候。
14、Graph Constrained Reinforcement Learning for Natural Language Action Spaces
文章链接: https://openreview.net/pdf?id=B1x6w0EtwH
Ammanabrolu 和 Hausknecht 提出了一项有关 IF 游戏中强化学习的新工作。这个工作中使用了 知识图谱来建模状态空间和用户交互。
Source: Ammanabrolu and Hausknecht
例如,词汇表中有数十个模板和数百个单词。尝试所有可能的排列是不可行的。但当你维护一个可见实体的知识图谱时,agent的可选项就会大幅度减少,于是便可以更快地推进游戏。
在他们提出的编码-解码模型 KG-A2C(Knowledge Graph Advantage Actor Critic)中,编码器采用GRU进行文本输入,并使用图注意力网络构建图嵌入。此外,在解码器阶段使用可见对象的图遮掩(graph mask)。在基准测试中,KG-A2C可以玩28个游戏!
Soon they will play computer games better than us meatbags.
很快,电子游戏上,他们将比我们这些菜包子们打的更好了。
6、Conclusion
目前我们看到,知识图谱已经越来越多地应用到 AI的各个领域,特别是NLP领域。
ICML 和ACL 随后也将到来,届时我们再见。
雷锋网雷锋网 (公众号:雷锋网)
via https://medium.com/@mgalkin/knowledge-graphs-iclr-2020-f555c8ef10e3
雷锋网原创文章,未经授权禁止转载。详情见 转载须知 。
以上所述就是小编给大家介绍的《一文全览,ICLR 2020 上的知识图谱研究》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 知识图谱发展的难点&构建行业知识图谱的重要性
- YOCSEF「知识图谱」专题探索班成功举办,五大高校、三大企业共话知识图谱理论与未来
- 新瓶装旧酒:为什么需要知识图谱?什么是知识图谱?——KG的前世今生
- 知识图谱:知识图谱赋能企业数字化转型 | AI 研习社职播间第 3 期
- 什么是知识图谱?
- 从知识工程到知识图谱全面回顾 | AI&Society
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Numerical Recipes 3rd Edition
William H. Press、Saul A. Teukolsky、William T. Vetterling、Brian P. Flannery / Cambridge University Press / 2007-9-6 / GBP 64.99
Do you want easy access to the latest methods in scientific computing? This greatly expanded third edition of Numerical Recipes has it, with wider coverage than ever before, many new, expanded and upd......一起来看看 《Numerical Recipes 3rd Edition》 这本书的介绍吧!
Base64 编码/解码
Base64 编码/解码
HEX CMYK 转换工具
HEX CMYK 互转工具