内容简介:COVID-19 or Coronavirus pandemic has a huge and unpredictable effect on our lives. I wanted to see the speed and spreading of the virus across countries. And the following is what and how I’ve seen:The animated visualization focuses on the chronology of vi
COVID-19 or Coronavirus pandemic has a huge and unpredictable effect on our lives. I wanted to see the speed and spreading of the virus across countries. And the following is what and how I’ve seen:
The animated visualization focuses on the chronology of virus distribution that started in China and spread globally. For strengthening a visual effect I placed countries (top 90 of all) in two semidiagonals, based on the date when each country reached the peak daily cases of the disease (dark red grid).
For a more detailed analysis, I’ve created two stationary charts. The first is the same as the animated one but countries are ordered from bottom to top.
The second centered on a day of maximum amount cases and shows how long and intensive were previous and next stages. It gives an opportunity to compare the effectiveness of different countries.
All values of new cases for each country were normalized via min/max normalization and ranged from 0 to 1. You can use the following R code with comments to play with the public dataset:
library(tidyverse)
library(reshape2)
library(purrrlyr)
# download dataset
df <- read_csv(url('https://covid.ourworldindata.org/data/ecdc/full_data.csv'))
# normalization function
fun_normalize <- function(x) {
return ((x - min(x)) / (max(x) - min(x)))
}
# preprocess data
df_prep <- df %>%
filter(location != 'World') %>%
group_by(location) %>%
# remove earlier dates
filter(date > as.Date('2020-01-15', format = '%Y-%m-%d')) %>%
# remove coutries with less than 1000 total cases
filter(max(total_cases) > 1000) %>%
# replace negative values with the mean
mutate(new_cases = ifelse(new_cases < 0,
round((lag(new_cases, default = 0) + lead(new_cases, default = 0)) / 2),
new_cases)) %>%
ungroup() %>%
select(location, date, new_cases) %>%
# prepare data for normalization
dcast(., date ~ location, value.var = 'new_cases') %>%
# replace NAs with 0
dmap_at(c(2:ncol(.)), function(x) ifelse(is.na(x), 0, x)) %>%
# normalization
dmap_at(c(2:ncol(.)), function(x) fun_normalize(x)) %>%
melt(., id.vars = c('date'), variable.name = 'country') %>%
mutate(value = round(value, 6))
# define countries order for plots
country_ord_1 <- df_prep %>%
group_by(country) %>%
filter(value == 1) %>%
ungroup() %>%
arrange(date, country) %>%
distinct(country) %>%
mutate(is_odd = ifelse((row_number() - 1) %% 2 == 0, TRUE, FALSE))
country_ord_anim <- bind_rows(country_ord_1 %>%
filter(is_odd == TRUE) %>%
arrange(desc(row_number())),
country_ord_1 %>%
filter(is_odd == FALSE))
# data for animated plot
df_plot_anim <- df_prep %>%
mutate(country = factor(country, levels = c(as.character(country_ord_anim$country)))) %>%
group_by(country) %>%
mutate(first_date = min(date[value >= 0.03])) %>%
mutate(cust_label = ifelse(date >= first_date, as.character(country), '')) %>%
ungroup()
# color palette
cols <- c('#e7f0fa','#c9e2f6', '#95cbee', '#0099dc', '#4ab04a', '#ffd73e', '#eec73a', '#e29421', '#e29421', '#f05336', '#ce472e')
# Animated Heatmap plot
p <- ggplot(df_plot_anim, aes(y = country, x = date, fill = value)) +
theme_minimal() +
geom_tile(color = 'white', width = .9, height = .9) +
scale_fill_gradientn(colours = cols, limits = c(0, 1),
breaks = c(0, 1),
labels = c('0', 'max'),
guide = guide_colourbar(ticks = T, nbin = 50, barheight = .5, label = T, barwidth = 10)) +
geom_text(aes(x = first_date, label = cust_label), size = 3, color = '#797D7F') +
scale_y_discrete(position = 'right') +
coord_equal() +
theme(legend.position = 'bottom',
legend.direction = 'horizontal',
plot.title = element_text(size = 20, face = 'bold', vjust = 2, hjust = 0.5),
axis.text.x = element_text(size = 8, hjust = .5, vjust = .5, face = 'plain'),
axis.text.y = element_blank(),
axis.title.y = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank()
) +
ggtitle('The spread of COVID-19 across countries: new daily cases normalized to location maximum')
# animated chart
library(gganimate)
library(gifski)
anim <- p +
transition_components(date) +
ggtitle('The spread of COVID-19 across countries: new daily cases normalized to location maximum',
subtitle = 'Date {frame_time}') +
shadow_mark()
animate(anim,
nframes = as.numeric(difftime(max(df_plot_anim$date), min(df_plot_anim$date), units = 'days')) + 1,
duration = 12,
fps = 12,
width = 1000,
height = 840,
start_pause = 5,
end_pause = 25,
renderer = gifski_renderer())
anim_save('covid-19.gif')
# Heatmap plot 1
df_plot_1 <- df_prep %>%
mutate(country = factor(country, levels = c(as.character(country_ord_1$country)))) %>%
group_by(country) %>%
mutate(first_date = min(date[value >= 0.03])) %>%
ungroup()
ggplot(df_plot_1, aes(y = country, x = date, fill = value)) +
theme_minimal() +
geom_tile(color = 'white', width = .9, height = .9) +
scale_fill_gradientn(colours = cols, limits = c(0, 1),
breaks = c(0, 1),
labels = c('0', 'max'),
guide = guide_colourbar(ticks = T, nbin = 50, barheight = .5, label = T, barwidth = 10)) +
geom_text(aes(x = first_date, label = country), size = 3, color = '#797D7F') +
scale_y_discrete(position = 'right') +
coord_equal() +
theme(legend.position = 'bottom',
legend.direction = 'horizontal',
plot.title = element_text(size = 20, face = 'bold', vjust = 2, hjust = 0.5),
axis.text.x = element_text(size = 8, hjust = .5, vjust = .5, face = 'plain'),
axis.text.y = element_text(size = 6, hjust = .5, vjust = .5, face = 'plain'),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank()
) +
ggtitle('The spread of COVID-19 across countries: new daily cases normalized to location maximum')
# Heatmap plot 2
df_plot_2 <- df_prep %>%
group_by(country) %>%
filter(date >= min(date[value > 0])) %>%
arrange(date, .by_group = TRUE) %>%
mutate(centr_day = min(row_number()[value == 1]),
n_day = row_number() - centr_day) %>%
ungroup()
country_ord_2 <- df_plot_2 %>%
group_by(country) %>%
filter(date >= min(date[value == 1])) %>%
summarise(value = sum(value)) %>%
ungroup() %>%
arrange(value, country) %>%
distinct(country)
df_plot_2 <- df_plot_2 %>%
mutate(country = factor(country, levels = c(as.character(country_ord_2$country)))) %>%
group_by(country) %>%
mutate(first_date = min(n_day[value >= 0.01])) %>%
ungroup()
# Heatmap plot 2
ggplot(df_plot_2, aes(y = country, x = n_day, fill = value)) +
theme_minimal() +
geom_tile(color = 'white', width = .9, height = .9) +
scale_fill_gradientn(colours = cols, limits = c(0, 1),
breaks = c(0, 1),
labels = c('0', 'max'),
guide = guide_colourbar(ticks = T, nbin = 50, barheight = .5, label = T, barwidth = 10)) +
geom_text(aes(x = first_date, label = country), size = 3, color = '#797D7F') +
coord_equal() +
theme(legend.position = 'bottom',
legend.direction = 'horizontal',
plot.title = element_text(size = 20, face = 'bold', vjust = 2, hjust = 0.5),
axis.text.x = element_text(size = 8, hjust = .5, vjust = .5, face = 'plain'),
#axis.text.y = element_text(size = 6, hjust = .5, vjust = .5, face = 'plain'),
axis.text.y = element_blank(),
axis.title.y = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank()
) +
ggtitle('Comparison of different countries effectiveness against COVID-19
(new daily cases normalized to location maximum and data centered on a day with maximum new cases)')
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
HTML5移动应用开发入门经典
凯瑞恩 / 林星 / 人民邮电出版社 / 2013-3 / 55.00元
《HTML5移动应用开发入门经典》总共分为24章,以示例的方式对如何使用HTML5及相关技术进行移动应用开发做了全面而细致的介绍。《HTML5移动应用开发入门经典》首先讲解了HTML5的起源以及它为什么适用于移动设备,然后讲解了HTML5的基本元素以及所做的改进、canvas(画布)、视音频、微格式、微数据、拖曳等新增特性,还讲解了WebSocket、WebWorkers、Web存储、离线Web应......一起来看看 《HTML5移动应用开发入门经典》 这本书的介绍吧!