PyTorch 1.5上线:加入稳定C++前端,高级自动梯度API

栏目: IT技术 · 发布时间: 5年前

内容简介:今天,PyTorch 1.5 宣布上线,此版本主要包括几个新的 API 的添加和改进。新版 PyTorch 包括对 C++前端的重大更新,用于计算机视觉模型的「channels last」存储格式,以及用于模型并行训练的分布式 RPC 框架的稳定版本。该版本还提供了针对自动求导机制中黑塞和雅可比的新 API,以及受 pybind 启发,允许用户创建自定义 C++类的一个 API。另外,torch_xla 已可在 PyTorch 1.5 版中使用,并在 1.5 版本中进行了测试,可提供成熟的 Cloud TP

今天,PyTorch 1.5 宣布上线,此版本主要包括几个新的 API 的添加和改进。新版 PyTorch 包括对 C++前端的重大更新,用于计算机视觉模型的「channels last」存储格式,以及用于模型并行训练的分布式 RPC 框架的稳定版本。该版本还提供了针对自动求导机制中黑塞和雅可比的新 API,以及受 pybind 启发,允许用户创建自定义 C++类的一个 API。另外,torch_xla 已可在 PyTorch 1.5 版中使用,并在 1.5 版本中进行了测试,可提供成熟的 Cloud TPU 体验。

版本说明:https://github.com/pytorch/pytorch/releases/tag/v1.5.0

主要变化

以下是 PyTorch 1.5 版本的主要变化

C++ 前端 API(稳定型)

现在 C++前端 API 与 Python 版同等丰富,之前实验性的功能都已移到「稳定版」中。主要亮点如下:

PyTorch 1.5上线:加入稳定C++前端,高级自动梯度API

专为计算机视觉设计的「Channels last」储存格式(实验型)

PyTorch 1.5上线:加入稳定C++前端,高级自动梯度API

「Channels last」储存布局解锁了使用高效卷积算法与硬件的能力。另外,它被设计为在众多运算中自动传播,使得用户能在不同储存布局间轻松切换。

自定义 C++类(实验型)

这次发布的版本中加入了 torch.CutomClassHolder 这一新的 API,能够将自定义的 C++类同时绑定到 TorchScript 和 Python 中。该 API 的用法几乎与 pybind11 相同,它允许用户将自定义的 C++类与方法暴露给 TorchScript 类型的系统,这使得用户能够从 TorchScript 和 Python 中实例化并操纵任意 C++对象。

以下为一个官方给出的实例:

template <class T>
struct MyStackClass : torch::CustomClassHolder {
  std::vector<T> stack_;
  MyStackClass(std::vector<T> init) : stack_(std::move(init)) {}

  void push(T x) {
    stack_.push_back(x);
  }
  T pop() {
    auto val = stack_.back();
    stack_.pop_back();
    return val;
  }
};

static auto testStack =
  torch::class_<MyStackClass<std::string>>("myclasses", "MyStackClass")
      .def(torch::init<std::vector<std::string>>())
      .def("push", &MyStackClass<std::string>::push)
      .def("pop", &MyStackClass<std::string>::pop)
      .def("size", [](const c10::intrusive_ptr<MyStackClass>& self) {
        return self->stack_.size();
      });

上述代码就暴露了一个类,用户可在 TorchScript 和 Python 中用如下方式调用:

@torch.jit.script
def do_stacks(s : torch.classes.myclasses.MyStackClass):
    s2 = torch.classes.myclasses.MyStackClass(["hi", "mom"])
    print(s2.pop()) # "mom"
    s2.push("foobar")
    return s2 # ["hi", "foobar"]

分布式 RPC 框架 API(稳定型)

分布式 RPC 框架在 1.4 版中作为实验性功能发布。当前版本涉及大量针对分布式 RPC 框架的可靠性与鲁棒性的功能强化以及错误修复,并加入了如性能调试支持、在 RPC 中使用 TorchScript 功能等一系列新功能。以下为该框架下各种 API 总览:

PyTorch 1.5上线:加入稳定C++前端,高级自动梯度API

全新的高级 autograd API(实验型)

PyTorch 1.5上线:加入稳定C++前端,高级自动梯度API

PyTorch 将包括 jacobian,hessian,jvp,vjp,hvp 和 vhp 在内的新函数导入到了 torch.autograd.functional 子模块中。这个特性建立在当前的 API 之上,允许用户轻松地执行这些函数。

不再支持 Python 2

PyTorch 1.5上线:加入稳定C++前端,高级自动梯度API

从 1.5.0 开始,PyTorch 将不再支持 Python 2,具体来说是 Python 2.7。PyTorch 对 Python 的支持将仅限于 Python 3,特别是 Python 3.5、3.6、3.7 和 3.8(首先在 PyTorch 1.4.0 中启用)。

参考链接:https://pytorch.org/blog/pytorch-1-dot-5-released-with-new-and-updated-apis/


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Cracking the Coding Interview

Cracking the Coding Interview

Gayle Laakmann McDowell / CareerCup / 2015-7-1 / USD 39.95

Cracking the Coding Interview, 6th Edition is here to help you through this process, teaching you what you need to know and enabling you to perform at your very best. I've coached and interviewed hund......一起来看看 《Cracking the Coding Interview》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

html转js在线工具
html转js在线工具

html转js在线工具