内容简介:以爱与青春为名,陪你一路成长
点下方“ 深度学习与先进智能 决策 ”进 号内搜
以爱与青春为名,陪你一路成长
大多数时候,人们使用不同的深度学习框架和标准开发 工具 箱。(SDKs),用于实施深度学习方法,具体如下:
框架
-
Tensorflow: https://www.tensorflow.org/
-
Caffe: http://caffe.berkeleyvision.org/
-
KERAS: https://keras.io/
-
Theano: http://deeplearning.net/software/theano/
-
Torch: http://torch.ch/
-
PyTorch: http://pytorch.org/
-
Lasagne: https://lasagne.readthedocs.io/en/latest/
-
DL4J (DeepLearning4J): https://deeplearning4j.org/
-
Chainer: http://chainer.org/
-
DIGITS: https://developer.nvidia.com/digits
-
CNTK (Microsoft):https://github.com/Microsoft/CNTK
-
MatConvNet: http://www.vlfeat.org/matconvnet/
-
MINERVA: https://github.com/dmlc/minerva
-
MXNET: https://github.com/dmlc/mxnet
-
OpenDeep: http://www.opendeep.org/
-
PuRine: https://github.com/purine/purine2
-
PyLerarn2: http://deeplearning.net/software/pylearn2/
-
TensorLayer: https://github.com/zsdonghao/tensorlayer
-
LBANN: https://github.com/LLNL/lbann
SDKs
-
cuDNN: https://developer.nvidia.com/cudnn
-
TensorRT: https://developer.nvidia.com/tensorrt
-
DeepStreamSDK: https://developer.nvidia.com/deepstream-sdk
-
cuBLAS: https://developer.nvidia.com/cublas
-
cuSPARSE: http://docs.nvidia.com/cuda/cusparse/
-
NCCL: https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
基准数据集
以下是常用于评估不同应用领域的深度学习方法的基准数据集列表。
图像分类或检测或分割
-
MNIST: http://yann.lecun.com/exdb/mnist/
-
CIFAR 10/100: https://www.cs.toronto.edu/~kriz/cifar.html
-
SVHN/ SVHN2: http://ufldl.stanford.edu/housenumbers/
-
CalTech 101/256: http://www.vision.caltech.edu/Image_Datasets/Caltech101/
-
STL-10: https://cs.stanford.edu/~acoates/stl10/
-
NORB: http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/
-
SUN-dataset: http://groups.csail.mit.edu/vision/SUN/
-
ImageNet: http://www.image-net.org/
-
National Data Science Bowl Competition: http://www.datasciencebowl.com/
-
COIL 20/100: http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
-
MS COCO DATASET: http://mscoco.org/
-
MIT-67 scene dataset: http://web.mit.edu/torralba/www/indoor.html
-
Caltech-UCSD Birds-200 dataset: http://www.vision.caltech.edu/visipedia/CUB-200- 2011.html
-
Pascal VOC 2007 dataset: http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
-
H3D Human Attributes dataset: https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/
-
Face recognition dataset: http://vis-www.cs.umass.edu/lfw/
-
For more data-set visit: https://www.kaggle.com/
-
http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
-
Recently Introduced Datasets in Sept. 2016:
-
Google Open Images (~9M images)—https://github.com/openimages/dataset
-
Youtube-8M (8M videos: https://research.google.com/youtube8m/
文本分类
-
Reuters-21578 Text Categorization Collection: http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
-
Sentiment analysis from Stanford: http://ai.stanford.edu/~amaas/data/sentiment/
-
Movie sentiment analysis from Cornel: http://www.cs.cornell.edu/people/pabo/movie-review-data/ Free eBooks : https://www.gutenberg.org/
-
Brown and stanford corpus on present americal english: https://en.wikipedia.org/wiki/Brown_Corpus
-
Google 1Billion word corpus: https://github.com/ciprian-chelba/1-billion-wordlanguage- modeling-benchmark
图像编码
-
Flickr-8k: http://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html
-
Common Objects in Context (COCO):http://cocodataset.org/#overview;http://sidgan.me/technical/2016/01/09/Exploring-Datasets
机器翻译
- Pairs of sentences in English and French : https://www.isi.edu/naturallanguage/ download/hansard/
-
European Parliament Proceedings parallel Corpus 196-2011: http://www.statmt.org/europarl/
-
The statistics for machine translation: http://www.statmt.org/
问答
-
Stanford Question Answering Dataset (SQuAD): https://rajpurkar.github.io/SQuADexplorer/
-
Dataset from DeepMind: https://github.com/deepmind/rc-data
-
Amazon dataset:http://jmcauley.ucsd.edu/data/amazon/qa/,;http://trec.nist.gov/data/qamain...,;http://www.ark.cs.cmu.edu/QA-data/,;http://webscope.sandbox.yahoo.co...,;http://blog.stackoverflow.com/20..
语音辨识
-
TIMIT: https://catalog.ldc.upenn.edu/LDC93S1
-
Voxforge: http://voxforge.org/
-
Open Speech and Language Resources: http://www.openslr.org/12/
文章摘要
-
https://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports
-
http://www-nlpir.nist.gov/related_projects/tipster_summac/cmp_lg.html
-
https://catalog.ldc.upenn.edu/LDC2002T31
情感分析
-
IMDB dataset: http://www.imdb.com/
高光谱图像分析
-
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
-
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
-
http://www2.isprs.org/commissions/comm3/wg4/HyRANK.html
期刊和会议
Conferences
-
Neural Information Processing System (NIPS)
-
International Conference on Learning Representation (ICLR): What are you doing for Deep Learning?
-
International Conference on Machine Learning (ICML)
-
Computer Vision and Pattern Recognition (CVPR): What are you doing with Deep Learning?
-
International Conference on Computer Vision (ICCV)
-
European Conference on Computer Vision (ECCV)
-
British Machine Vision Conference (BMVC)
Journal
-
Journal of Machine Learning Research (JMLR)
-
IEEE Transaction of Neural Network and Learning System (
-
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
-
Computer Vision and Image Understanding (CVIU)
-
Pattern Recognition Letter
-
Neural Computing and Application
-
International Journal of Computer Vision
-
IEEE Transactions on Image Processing
-
IEEE Computational Intelligence Magazine
-
Proceedings of IEEE
-
IEEE Signal Processing Magazine
-
Neural Processing Letter
-
Pattern Recognition
-
Neural Networks
-
ISPPRS Journal of Photogrammetry and Remote Sensing
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- [译] 精心整理,机器学习的 3 大学习资源
- OpenGL ES 学习资源分享
- ApacheCN 学习资源汇总 2019.3
- 吐血推荐,B 站最强学习资源汇总(数据科学、机器学习、Python)
- 手把手教你在试验中修正机器学习模型(附学习资源)
- egret游戏入门之学习资源篇
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
你凭什么做好互联网
曹政 / 中国友谊出版公司 / 2016-12 / 42.00元
为什么有人可以预见商机、超越景气,在不确定环境下表现更出色? 在规则之外,做好互联网,还有哪些关键秘诀? 当环境不给机会,你靠什么翻身? 本书为“互联网百晓生”曹政20多年互联网经验的总结,以严谨的逻辑思维分析个人与企业在互联网发展中的一些错误思想及做法,并给出正确解法。 从技术到商业如何实现,每个发展阶段需要匹配哪些能力、分解哪些目标、落实哪些策略都一一点出,并在......一起来看看 《你凭什么做好互联网》 这本书的介绍吧!