Image Augmentation with skimage — Python

栏目: IT技术 · 发布时间: 4年前

Image Augmentation with skimage — Python

Image Augmentation with skimage — Python

PC: Flickr

Hey buddies, recently I was working on an image classification problem. But unfortunately, there were no enough samples in one of class. I searched on the internet and learned about a technique called Image Augmentation. Here I have shared my understanding of this technique and shared some codes using skimage, you can find the jupyter notebook at the bottom.

What is Image Augmentation?

Image Augmentation is a technique used to artificially increase the size of your image dataset. It can be achieved by applying random transformations to your image.

We know Deep learning models are able to generalize well when it is able to see more data, Data Augmentation can create variations of existing images which helps to generalize well. Image Augmentation can be applied mainly on two domains of Image

  1. Position Augmentation
  2. Color Augmentation

What is Position Augmentation?

Positon Augmentation is simple where we apply different transformations on pixel positions.

Scaling, Rotation, Cropping, Flipping, Padding, Zoom, Translation, Shearing, and other Affine transformations are examples for the Position Augmentation. Let us try applying some of these transformations.

import numpy as np
from skimage.io import imread, imsave
import matplotlib.pyplot as plt
from skimage import transform
from skimage.transform import rotate, AffineTransform
from skimage.util import random_noise
from skimage.filters import gaussian
from scipy import ndimage# load Image
img = imread('./butterfly.jpg') / 255# plot original Image
plt.imshow(img)
plt.show()
Original Image PC: Flickr
# image rotation using skimage.transformation.rotate
rotate30 = rotate(img, angle=30)
rotate45 = rotate(img, angle=45)
rotate60 = rotate(img, angle=60)
rotate90 = rotate(img, angle=90)fig = plt.figure(tight_layout='auto', figsize=(10, 7))fig.add_subplot(221)
plt.title('Rotate 30')
plt.imshow(rotate30)fig.add_subplot(222)
plt.title('Rotate 45')
plt.imshow(rotate45)fig.add_subplot(223)
plt.title('Rotate 60')
plt.imshow(rotate60)fig.add_subplot(224)
plt.title('Rotate 90')
plt.imshow(rotate90)plt.show()
# image shearing using sklearn.transform.AffineTransform
# try out with differnt values of shear 
tf = AffineTransform(shear=-0.5)
sheared = transform.warp(img, tf, order=1, preserve_range=True, mode='wrap')sheared_fig = plot_side_by_side(img, sheared, 'Original', 'Sheared')
# Image rescaling with sklearn.transform.rescale
rescaled = transform.rescale(img, 1.1)rescaled_fig = plot_side_by_side(img, rescaled, 'Original', 'Rescaled')
plt.show()print('Original Shape: ',img.shape)
print('Rescaled Shape: ',rescaled.shape)Output: 
Original Shape: (684, 1024, 3)
Rescaled Shape: (752, 1126, 3)
# flip up-down using np.flipud
up_down = np.flipud(img)fig_updown = plot_side_by_side(img, up_down, 'Original', 'Up-Down')
plt.show()
# flip up-down using np.flipud
left_right = np.fliplr(img)fig_lr = plot_side_by_side(img, left_right, 'Original', 'Up-Right')
plt.show()

What is Color Augmentation?

Color Augmentation is the technique where we play with the intensity value of pixels.

We reproduce different images by tweaking Brightness, Contrast, Saturation, and also we can add random noise to the Image.

# Apply Random Noise to image using skimage.utils.random_noise
noised = random_noise(img, var=0.1**2)fig_noised = plot_side_by_side(img, noised, 'Original', 'Noised')
plt.show()
# Increasing the brighness of the Image
# Note: Here we add 100/255 since we scaled Intensity values of Image when loading (by dividing it 255)
highB = img + (100/255)fig_highB = plot_side_by_side(img, highB, 'Original', 'highB')
plt.show()
# Increasing the contrast of the Image
# Note: Here we add 100/255 since we scaled Intensity values of Image when loading (by dividing it 255)
highC = img * 1.5fig_highB = plot_side_by_side(img, highC, 'Original', 'highC')
plt.show()

Did you notice one thing, we have already created 11 different images from 1 Image. Note we can still play with parameters and create a lot more.

When training neural networks we can add Random transformations to the ImageLoader. There are other advanced techniques like using GAN for Data Augmentation, let us see that in another article. I hope now you understand what is Image Augmentation.

You can find the notebook at https://github.com/Mathanraj-Sharma/sample-for-medium-article/blob/master/image-augmentation-skimage/image-augmentation.ipynb


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

心理学与生活

心理学与生活

[美] 理查德·格里格、菲利普·津巴多 / 王垒、王甦 等 / 人民邮电出版社 / 2003-10 / 88.00元

《心理学与生活》是美国斯坦福大学多年来使用的教材,也是在美国许多大学里推广使用的经典教材,被ETS推荐为GRE心理学专项考试的主要参考用书,还是被许多国家大学的“普通心理学”课程选用的教材。这本教科书写作流畅,通俗易懂,深入生活,把心理学理论与知识联系人们的日常生活与工作,使它同样也成为一般大众了解心理学与自己的极好读物。 作为一本包含着丰富的教育思想和独特教学方法的成熟教材,原书中所有元素......一起来看看 《心理学与生活》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具