An Offbeat Approach to Brain Tumor Classification using Computer Vision

栏目: IT技术 · 发布时间: 4年前

An Offbeat Approach to Brain Tumor Classification using Computer Vision

An Offbeat Approach to Brain Tumor Classification using Computer Vision

Computer Vision plays a very crucial role in the field of Medical Science and this study of Applied Computer Vision in Medical Science is broadly known as Medical Imaging . Now, Computer Vision is achieved either by deploying Machine Learning or Deep Learning methodologies or both (hybrid) into production.

In this article, I am going to throw light on one such Machine Learning Methodology that uses a Deep Learning Block making it a Hybrid Model for Brain Tumor Classification.

Hybrid Model Development for Brain Tumor Classification

  • The Dataset : Brain MRI Images Dataset available in Kaggle, is used for Model Development ( download ). The dataset contains 253 MRI Images of the Brain. Sample images are shown below.
Tumorous (Left) & Non-Tumorous (Right)
  • 3-Layered-Feed-forward-Convolutional Neural Network for Image Feature Extraction : The proposed CNN Architecture is shown below:

This CNN Architecture is forward passed only once ( no backpropagation ) for Feature Extraction. This is the Deep Learning Block as discussed above.

  • Support Vector Machine (SVM)-RBF Kernel : SVM’s RBF Kernel is instantiated and trained for Predictive Model Development. The ML Block is developed using Scikit-Learn.

Implementation of the Hybrid CNN-SVM Model

The CNN Model is developed using Keras Framework:

# Importing all necessary libraries
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
# CNN Model Development
classifier = Sequential()
# CONVOLUTION (1st Layer)
classifier.add(Convolution2D(32,(3,3),strides = (3,3),input_shape=(1000,1000,3),activation='relu'))
# Max-Pooling for 1st Convolutional Layer
classifier.add(MaxPooling2D(pool_size=(2,2)))
# CONVOLUTION (2nd Layer)
classifier.add(Convolution2D(32,(3,3),strides = (3,3), activation = 'relu'))
# Max-Pooling for 2nd Convolutional Layer
classifier.add(MaxPooling2D(pool_size=(2,2)))
# CONVOLUTION (3rd Layer)
classifier.add(Convolution2D(32,(3,3),strides = (3,3), activation = 'relu'))
# Max-Pooling for 3rd Convolutional Layer
classifier.add(MaxPooling2D(pool_size=(2,2)))
# FLATTENING
classifier.add(Flatten())

Delving Deep into the CNN Model instantiated:

classifier.summary()
Model Summary showing that a total of 512 Image Features will be extracted

Loading the CNN Model with pre-saved weights obtained via raw experimentation of the whole methodology (yet to discuss the remaining steps). The weights are available in a Hierarchical Data Format (H5) File in the link mentioned below:

classifier.load_weights("Brain_Tumor_PCA.h5")

Image Feature Extraction using the Instantiated CNN Model

# Importing the necessary libraries
import numpy as np
import cv2
import os
# initializing the feature matrix
X = np.ones((253, 512))
# image loading and feature extraction
i = 0
os.chdir('.../MRI_IMAGES/train/yes')
for filename in os.listdir('.../MRI_IMAGES/train/yes'):
img = cv2.imread(filename)
img = cv2.resize(img,(1000,1000))
img = np.divide(img,255)
img = img.reshape(1,1000,1000,3)
X[i] = classifier.predict(img)
i = i + 1
os.chdir('.../MRI_IMAGES/train/no')
for filename in os.listdir('.../MRI_IMAGES/train/no'):
img = cv2.imread(filename)
img = cv2.resize(img,(1000,1000))
img = np.divide(img,255)
img = img.reshape(1,1000,1000,3)
X[i] = classifier.predict(img)
i = i + 1
os.chdir('.../MRI_IMAGES/test/yes')
for filename in os.listdir('.../MRI_IMAGES/test/yes'):
img = cv2.imread(filename)
img = cv2.resize(img,(1000,1000))
img = np.divide(img,255)
img = img.reshape(1,1000,1000,3)
X[i] = classifier.predict(img)
i = i + 1
os.chdir('.../MRI_IMAGES/test/no')
for filename in os.listdir('.../MRI_IMAGES/test/no'):
img = cv2.imread(filename)
img = cv2.resize(img,(1000,1000))
img = np.divide(img,255)
img = img.reshape(1,1000,1000,3)
X[i] = classifier.predict(img)
i = i + 1
# Preparing the Actual Labels
y = np.concatenate((np.ones(121), np.zeros(79), np.ones(34), np.zeros(19)))

Dimensionality Reduction using Principal Component Analysis

# Importing necessary libraries
from sklearn.decomposition import PCA
pca = PCA(n_components = 2)
pca.fit(X.T)
Z = pca.components_.T

Scatter Plot Visualization of the Dataset

# Importing the necessary libraries
import matplotlib.pyplot as plt
plt.scatter(Z.T[0], Z.T[1], c = y, s = 10, marker = 'x')
plt.title('Scatter Plot Visualization (VIOLET -> Non-Tumorous, YELLOW -> Tumorous)')
plt.xlabel("F1_PCA")
plt.ylabel("F2_PCA")
Scatter Plot

So, from the Scatter Plot, it is evident that no ML Algorithm that linearly separates the original feature space, are applicable here.

Spliting the Dataset into Training and Test Set

# Importing necessary libraries
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(Z,y, test_size=0.1, random_state=1234)

SVM (RBF Kernel) Predictive Model Development and Grid-Search Tuning for selection of best hyper-parameter i.e., C (penalty parameter in SVMs)

# Importing necessary libraries
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
# MODEL INSTANTIATION
model = SVC(kernel = 'rbf')
parameters = {'C':[0.1,1,10,100,1000,10000,100000]}
grid_search = GridSearchCV(param_grid = parameters, estimator = model, verbose = 3)
# MODEL TRAINING AND GRID-SEARCH TUNING
grid_search = grid_search.fit(X_train,y_train)

Getting the best Hyper-parameter i.e., C, the penalty parameter

print(grid_search.best_params_)

And, the ‘gamma’ parameter of SVM (RBF Kernel) is set to (1/number_of_features) as default value in Scikit-Learn. So, gamma = 0.5

Model Performance Analysis

print("Validation Accuracy:",grid_search.score(X_test,y_test))
print("Training Accuracy: ",grid_search.score(X_train, y_train))
Training Accuracy: 76.21% and Validation Accuracy: 76.92% (PERFECT FIT)
# Importing the necessary library
from sklearn.metrics import classification_report
print(classification_report(y_test,grid_search.predict(X_test)))
Classification Report
# Importing the necessary libraries
import matplotlib.pyplot as plt
%matplotlib inline
import itertools
from sklearn.metrics import confusion_matrix
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.figure()
plot_confusion_matrix(confusion_matrix(y_test, grid_search.predict(X_test)), classes=[0,1], normalize=True,
title='Confusion Matrix')
Normalized Confusion Matrix
# Importing the necessary modules
from sklearn.metrics import roc_curve, auc
y_roc = np.array(y_test)
fpr, tpr, thresholds = roc_curve(y_roc, grid_search.decision_function(X_test))
roc_auc = auc(fpr, tpr)
print("Area under the ROC curve : %f" % roc_auc)
Area Under the Receiver Operator Characteristic curve (AUROC)
# Importing the necessary libraries
import pylab as pl
pl.clf()
pl.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
pl.plot([0, 1], [0, 1], 'k--')
pl.xlim([0.0, 1.0])
pl.ylim([0.0, 1.0])
pl.xlabel('False Positive Rate')
pl.ylabel('True Positive Rate')
pl.legend(loc="lower right")
pl.show()
AUROC Curve

Logic Justification by Decision Boundary

Logic Justification is very essential for any AI Model, be it based on Machine Learning or Deep Learning and this methodology is no exception. In Deep Learning Models involved in Medical Imaging, Logic Justification is done using Grad Cam Visualizations, which is later verified by doctors. Hence pure Deep Learning Models enjoy an upper-hand.

Here, the methodology is based on Support Vector Machine, which is a Pattern Recognition based Machine Learning Algorithm using N-Dimensional Feature Space Geometry. So, Decision Boundary Visualization is the best way of Logic Justification for the whole methodology.

x_min, x_max = X_train[:, 0].min(), X_train[:, 0].max()
y_min, y_max = X_train[:, 1].min(), X_train[:, 1].max()
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.001),
 np.arange(y_min, y_max, 0.001))h = grid_search.predict(np.c_[xx.ravel(), yy.ravel()])
h = h.reshape(xx.shape)
plt.contourf(xx, yy, h)
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, s = 10, marker = 'o', edgecolor = 'k')
plt.title('Scatter Plot Visualization of Training Set (VIOLET -> Non-Tumorous, YELLOW -> Tumorous)')
plt.xlabel('F1_PCA')
plt.ylabel('F2_PCA')
x_min, x_max = X_test[:, 0].min(), X_test[:, 0].max()
y_min, y_max = X_test[:, 1].min(), X_test[:, 1].max()
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.001),
 np.arange(y_min, y_max, 0.001))h = grid_search.predict(np.c_[xx.ravel(), yy.ravel()])
h = h.reshape(xx.shape)
plt.contourf(xx, yy, h)
plt.scatter(X_test[:, 0], X_test[:, 1], c = y_test, s = 10, marker = 'o', edgecolor = 'k')
plt.title('Scatter Plot Visualization of Test Set (VIOLET -> Non-Tumorous, YELLOW -> Tumorous)')
plt.xlabel('F1_PCA')
plt.ylabel('F2_PCA')

以上所述就是小编给大家介绍的《An Offbeat Approach to Brain Tumor Classification using Computer Vision》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

数字民主的迷思

数字民主的迷思

[美] 马修·辛德曼 / 唐杰 / 中国政法大学出版社 / 2015-12-25 / CNY 39.00

马修·辛德曼著的《数字民主的迷思》主要讨论互联网对美国政治的影响,聚焦的是“民主化”这一课题。针对公众关于网络民主的美好想象与过分狂热,它通过对在线竞选、链接结构、流量模式、搜索引擎使用、博客与博主、内容生产的“规模经济”等主题的深入处理,借助大量数据图表与分析,勾勒出互联网政治的种种局限性。尤其表明,网络政治信息仍然为一小群精英与机构所创造和过滤,在网络的每一个层次和领域都仍然遵循着“赢家通吃”......一起来看看 《数字民主的迷思》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

MD5 加密
MD5 加密

MD5 加密工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试