Why computing standard deviation in pandas and NumPy yields different results?
Curious? Let’s talk about statistics, populations, and samples…
Apr 29 ·5min read
How many of you have noticed that when you compute standard deviation using pandas and compare it to a result of NumPy function you will get different numbers?
I bet some of you did not realize this fact. And even if you did you’re maybe asking: Why?
In this short article, we will demonstrate that:
standard deviations results are indeed different using both libraries (at least at the first glance), discuss why is that so (focusing on populations, samples, and how this influences calculation of standard deviation for each library) and finally show you how to obtain same results using pandas and NumPy (in the end they should agree on such a simple computation that standard deviation is)
Let’s get started.
以上所述就是小编给大家介绍的《Why computing standard deviation in pandas and NumPy yields different results?》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
互联网的误读
詹姆斯•柯兰(James Curran)、娜塔莉•芬顿(Natalie Fenton)、德 斯•弗里德曼(Des Freedman) / 何道宽 / 中国人民大学出版社 / 2014-7-1 / 45.00
互联网的发展蔚为壮观。如今,全球的互联网用户达到20亿之众,约占世界人口的30%。这无疑是一个新的现象,对于当代各国的经济、政治和社会生活意义重大。有关互联网的大量大众读物和学术著作鼓吹其潜力将从根本上被重新认识,这在20世纪90年代中期一片唱好时表现尤甚,那时许多论者都对互联网敬畏三分,惊叹有加。虽然敬畏和惊叹可能已成过去,然而它背后的技术中心主义——相信技术决定结果——却阴魂不散,与之伴生的则......一起来看看 《互联网的误读》 这本书的介绍吧!