Why computing standard deviation in pandas and NumPy yields different results?

栏目: IT技术 · 发布时间: 5年前

Why computing standard deviation in pandas and NumPy yields different results?

Curious? Let’s talk about statistics, populations, and samples…

Why computing standard deviation in pandas and NumPy yields different results?

Image by Gerd Altmann from Pixabay

How many of you have noticed that when you compute standard deviation using pandas and compare it to a result of NumPy function you will get different numbers?

I bet some of you did not realize this fact. And even if you did you’re maybe asking: Why?

In this short article, we will demonstrate that:

standard deviations results are indeed different using both libraries (at least at the first glance),
discuss why is that so (focusing on populations, samples, and how this influences calculation of standard deviation for each library)
and finally show you how to obtain same results using pandas and NumPy (in the end they should agree on such a simple computation that standard deviation is)

Let’s get started.


以上所述就是小编给大家介绍的《Why computing standard deviation in pandas and NumPy yields different results?》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

痛点

痛点

马丁·林斯特龙 / 陈亚萍 / 中信出版集团股份有限公司 / 2017-4-1 / CNY 49.00

互联网经济迅猛发展,大数据成为分析用户需求的一种惯性路径。世界首席品牌营销专家林斯特龙则指出,大数据连接了千百万的数据点,可以准确地产生相互关系。但是,当人类按照自己的习惯行动时,大数据分析通常不会十分准确。所以挖掘用户需求时,在大数据之外,更重要的是通过对一个小群体的亲身观察和小数据常识,捕捉到这个社会群体所体现出的文化欲望。满足这些用户需求,击中痛点,则意味着将掌握无限的商机。一起来看看 《痛点》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具