Learning to Prove Theorems via Interacting with Proof Assistants

栏目: IT技术 · 发布时间: 4年前

内容简介:[Submitted on 21 May 2019]

[Submitted on 21 May 2019]

Title: Learning to Prove Theorems via Interacting with Proof Assistants

Authors: Kaiyu Yang , Jia Deng

Download PDF

Abstract: Humans prove theorems by relying on substantial high-level reasoning and problem-specific insights. Proof assistants offer a formalism that resembles human mathematical reasoning, representing theorems in higher-order logic and proofs as high-level tactics. However, human experts have to construct proofs manually by entering tactics into the proof assistant. In this paper, we study the problem of using machine learning to automate the interaction with proof assistants. We construct CoqGym, a large-scale dataset and learning environment containing 71K human-written proofs from 123 projects developed with the Coq proof assistant. We develop ASTactic, a deep learning-based model that generates tactics as programs in the form of abstract syntax trees (ASTs). Experiments show that ASTactic trained on CoqGym can generate effective tactics and can be used to prove new theorems not previously provable by automated methods. Code is available at this https URL .


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

数学与泛型编程

数学与泛型编程

[美]亚历山大 A. 斯捷潘诺夫(Alexander A. Stepanov)、[美]丹尼尔 E. 罗斯(Daniel E. Rose) / 爱飞翔 / 机械工业出版社 / 2017-8 / 79

这是一本内容丰富而又通俗易懂的书籍,由优秀的软件设计师 Alexander A. Stepanov 与其同事 Daniel E. Rose 所撰写。作者在书中解释泛型编程的原则及其所依据的抽象数学概念,以帮助你写出简洁而强大的代码。 只要你对编程相当熟悉,并且擅长逻辑思考,那么就可以顺利阅读本书。Stepanov 与 Rose 会清晰地讲解相关的抽象代数及数论知识。他们首先解释数学家想要解决......一起来看看 《数学与泛型编程》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试