An Intro into the Lambda Architecture

栏目: IT技术 · 发布时间: 4年前

内容简介:The Lambda Architecture itself is a software design pattern, aiming to unify data processing. Its design enables it to process substantial quantities of data by applying both methods of batch and stream processing. A combination of these methods is used as

The Lambda Architecture itself is a software design pattern, aiming to unify data processing. Its design enables it to process substantial quantities of data by applying both methods of batch and stream processing. A combination of these methods is used as the patterns architecture approaches typical obstacles like latency, throughput and fault-tolerance.

It is used for high availability online applications, where, due to time delays, data validity is required. Generating precise and complete views by using batch processing and providing views of online data is done simultaneously.

Functionality

The Lambda Architecture has three main components, which are responsible for two main tasks. To interact and process newly incoming data and to react to queries on the existing data source. The incoming data sets will be handed off to the batch and the speed layer for further processing.

Batch Layer

The batch layer is responsible for taking care of the master data set. The master data set consists of an append-only, immutable set which only contains raw data. This is done by using a distributed processing system, which may handle massive amounts of data at once.

It gains its accuracy by being able to process all available data whilst generating views. By precomputing views based on the complete data set it is able to eliminate any error in the raw data. The output is typically generated by using map-reduce.

Map-reduce is a technique which takes a large data set and divides it into subsets. A specific function is then performed on each subset. These subsets are combined to form the output.

This output is usually stored in a read-only database, where updates fully delete the existing precomputed views. The batch layer allows the processing of older data sets. By analysing these it is possible to optimize the processing function used in the map-reduce action.

Speed Layer

The speed layer processes data streams in real-time. Therefore it neither guarantees its data to accurate nor to have fixed corrupt data. It attempts to minimize latency whilst granting real-time views into the most recent data. Thus its main purpose is to fill any gaps in the data caused by the batch layer’s lag in providing views based on the most recent data. The output of the speed layer may be thrown away after the calculations of the batch layers are finished.

Serving Layer

The serving layer combines the output from both batch and speed layer. As the initial entry point, it receives queries and responds to them. The complete data set is already available as it can use precomputed views or build them based on the processed data.


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

读屏时代

读屏时代

(美)Naomi S. Baron(内奥米·S.巴伦) / 庞洋 / 电子工业出版社 / 2016-7 / 55.00

书中作者探讨了技术如何重塑人们对阅读的定义。数字阅读越来越受欢迎,更便利、节约成本、并把免费书籍提供给全世界的读者。但是,作者也指出其弊处在于读者很容易被设备上的其他诱惑分心、经常走马观花而非深入阅读。更重要的是,人们阅读方式的变化会影响了作者的写作方式。为了迎合人们阅读习惯的转变,许多作家和出版商的作品越来越短小和碎片化,或者更青睐无需思考和细读的作品。作者比较了纸质阅读和在线阅读的重要性,包括......一起来看看 《读屏时代》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

MD5 加密
MD5 加密

MD5 加密工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具