pyecharts数据可视化模块

栏目: IT技术 · 发布时间: 5年前

内容简介:目录我们都知道python上的一款可视化工具matplotlib,而前些阵子做一个Spark项目的时候用到了百度开源的一个可视化JS工具-Echarts,可视化类型非常多,但是得通过导入js库在Java Web项目上运行,平时用Python比较多,于是就在想有没有Python与Echarts结合的轮子。Google后,找到一个国人开发的一个Echarts与Python结合的轮子:pyecharts,下面就来简述下pyecharts一些使用细则:写这篇文章用的是Win环境,首先打开命令行(win+R),输入:

目录

我们都知道 python 上的一款可视化工具matplotlib,而前些阵子做一个Spark项目的时候用到了百度开源的一个可视化JS工具-Echarts,可视化类型非常多,但是得通过导入js库在Java Web项目上运行,平时用Python比较多,于是就在想有没有Python与Echarts结合的轮子。Google后,找到一个国人开发的一个Echarts与Python结合的轮子:pyecharts,下面就来简述下pyecharts一些使用细则:

安装

写这篇文章用的是Win环境,首先打开命令行(win+R),输入:

pip install pyecharts

但笔者实测时发现,由于墙的原因,下载时会出现断线和速度过慢的问题导致下载失败,所以建议通过清华镜像来进行下载:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts

pyecharts数据可视化模块

出现上方的信息,即代表下载成功,我们可以来进行下一步的实验了!

号:923414804
    群里有志同道合的小伙伴,互帮互助,
    群里有不错的视频学习教程和PDF!

使用实例

使用之前我们要强调一点:就是python2.x和python3.x的编码问题,在python3.x中你可以把它看做默认是unicode编码,但在python2.x中并不是默认的,原因就在它的bytes对象定义的混乱,而pycharts是使用unicode编码来处理字符串和文件的,所以当你使用的是python2.x时,请务必在上方插入此代码:

from future import unicode_literals

现在我们来开始正式使用pycharts,这里我们直接使用官方的数据:

柱状图-Bar

//导入柱状图-Bar
from pyecharts import Bar
//设置行名
columns = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
//设置数据
data1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]
data2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]
//设置柱状图的主标题与副标题
bar = Bar("柱状图", "一年的降水量与蒸发量")
//添加柱状图的数据及配置项
bar.add("降水量", columns, data1, mark_line=["average"], mark_point=["max", "min"])
bar.add("蒸发量", columns, data2, mark_line=["average"], mark_point=["max", "min"])
//生成本地文件(默认为.html文件)
bar.render()

运行结果如下:

pyecharts数据可视化模块

简单的几行代码就可以将数据进行非常好看的可视化,而且还是动态的,在这里还是要安利一下jupyter,pyecharts在v0.1.9.2版本开始,在jupyter上直接调用实例(例如上方直接调用bar)就可以将图表直接表示出来,非常方便。

笔者数了数,目前pyecharts上的图表大概支持到二十多种,接下来,我们再用上方的数据来生成几个数据挖掘常用的图表示例:

饼图-Pie

//导入饼图Pie
from pyecharts import Pie
//设置主标题与副标题,标题设置居中,设置宽度为900
pie = Pie("饼状图", "一年的降水量与蒸发量",title_pos='center',width=900)
//加入数据,设置坐标位置为【25,50】,上方的colums选项取消显示
pie.add("降水量", columns, data1 ,center=[25,50],is_legend_show=False)
//加入数据,设置坐标位置为【75,50】,上方的colums选项取消显示,显示label标签
pie.add("蒸发量", columns, data2 ,center=[75,50],is_legend_show=False,is_label_show=True)
//保存图表
pie.render()

pyecharts数据可视化模块

箱体图-Boxplot

//导入箱型图Boxplot
from pyecharts import Boxplot 
boxplot = Boxplot("箱形图", "一年的降水量与蒸发量")
x_axis = ['降水量','蒸发量']
y_axis = [data1,data2]
//prepare_data方法可以将数据转为嵌套的 [min, Q1, median (or Q2), Q3, max]
yaxis = boxplot.prepare_data(y_axis)       
boxplot.add("天气统计", x_axis, _yaxis)
boxplot.render()

pyecharts数据可视化模块

折线图-Line

from pyecharts import Line
line = Line("折线图","一年的降水量与蒸发量")
//is_label_show是设置上方数据是否显示
line.add("降水量", columns, data1, is_label_show=True)
line.add("蒸发量", columns, data2, is_label_show=True)
line.render()

pyecharts数据可视化模块

雷达图-Rader

from pyecharts import Radar
radar = Radar("雷达图", "一年的降水量与蒸发量")
//由于雷达图传入的数据得为多维数据,所以这里需要做一下处理
radar_data1 = [[2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]]
radar_data2 = [[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]]
//设置column的最大值,为了雷达图更为直观,这里的月份最大值设置有所不同
schema = [ 
    ("Jan", 5), ("Feb",10), ("Mar", 10),
    ("Apr", 50), ("May", 50), ("Jun", 200),
    ("Jul", 200), ("Aug", 200), ("Sep", 50),
    ("Oct", 50), ("Nov", 10), ("Dec", 5)
]
//传入坐标
radar.config(schema)
radar.add("降水量",radar_data1)
//一般默认为同一种颜色,这里为了便于区分,需要设置item的颜色
radar.add("蒸发量",radar_data2,item_color="#1C86EE")
radar.render()

pyecharts数据可视化模块

散点图-scatter

from pyecharts import Scatter
scatter = Scatter("散点图", "一年的降水量与蒸发量")
//xais_name是设置横坐标名称,这里由于显示问题,还需要将y轴名称与y轴的距离进行设置
scatter.add("降水量与蒸发量的散点分布", data1,data2,xaxis_name="降水量",yaxis_name="蒸发量",
            yaxis_name_gap=40)
scatter.render()

pyecharts数据可视化模块

图表布局 Grid

由于标题与图表是属于两个不同的控件,所以这里必须对下方的图表Line进行标题位置设置,否则会出现标题重叠的bug。

from pyecharts import Grid
//设置折线图标题位置
line = Line("折线图","一年的降水量与蒸发量",title_top="45%")
line.add("降水量", columns, data1, is_label_show=True)
line.add("蒸发量", columns, data2, is_label_show=True)
grid = Grid()
//设置两个图表的相对位置
grid.add(bar, grid_bottom="60%")
grid.add(line, grid_top="60%")
grid.render()

pyecharts数据可视化模块

img

from pyecharts import Overlap
overlap = Overlap()
bar = Bar("柱状图-折线图合并", "一年的降水量与蒸发量")
bar.add("降水量", columns, data1, mark_point=["max", "min"])
bar.add("蒸发量", columns, data2, mark_point=["max", "min"])
overlap.add(bar)
overlap.add(line)
overlap.render()

pyecharts数据可视化模块


以上所述就是小编给大家介绍的《pyecharts数据可视化模块》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

信号与噪声

信号与噪声

[美] 纳特•西尔弗 / 胡晓姣、张新、朱辰辰 / 中信出版社 / 2013-8 / 69.00元

【编辑推荐】 从海量的大数据中筛选出真正的信号, “黑天鹅”事件也可提前预知! “本书将成为未来十年内最重要的书籍之一。”——《纽约时报》 “对于每一个关心下一刻可能会发生什么的人来说,这都是本必读书。”——理查德•泰勒 《华尔街日报》2012年度10本最佳非虚构类图书之一 《经济学人》杂志2012年度书籍 亚马逊网站2012年度10本最佳非虚构类图书之一......一起来看看 《信号与噪声》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具