Multi-Agent RL: Nash Equilibria and Friend or Foe Q-Learning

栏目: IT技术 · 发布时间: 4年前

内容简介:For whatever reason, humans innately possess the ability to collaborate. It’s become so commonplace that its nuances slip right under our noses. How do we justHere’s an interpretation: we reach a balance. AnMulti-agent learning environments are typically r

Making robots tip the scales

Multi-Agent RL: Nash Equilibria and Friend or Foe Q-Learning

Photo by Toa Heftiba on Unsplash

For whatever reason, humans innately possess the ability to collaborate. It’s become so commonplace that its nuances slip right under our noses. How do we just know how to coordinate when moving a heavy couch? How do we reason splitting up in a grocery store to minimize time? How are we able to observe others’ actions and understand how to best respond ?

Here’s an interpretation: we reach a balance. An equilibrium. Each person takes actions that not only best complements the others’ but altogether achieves the task at hand most efficiently. This application of equilibria comes up pretty often in game theory and extends to multi-agent RL (MARL). In this article, we explore two algorithms, Nash Q-Learning and Friend or Foe Q-Learning, both of which attempt to find multi-agent policies fulfilling this idea of “balance.” We assume basic knowledge of single-agent formulations and Q-learning.

Multi-Agent RL: Nash Equilibria and Friend or Foe Q-Learning

Photo by Erik Mclean on Unsplash

What Makes an Optimal Policy…Optimal?

Multi-agent learning environments are typically represented by Stochastic Games. Each agent aims to find a policy that maximizes their own expected discounted reward. Together, the overall goal is to find a joint policy that gathers the most reward for each agent . This joint reward is defined below in the form of a value function:

This goal applies to both competitive and collaborative situations. Agents can find policies that best counter or complement others. We call this optimal policy the Nash Equilibrium. More formally, it is a policy such that has this property:

At first, it seems like we’re beating a dead horse. The best policy gathers the most reward, so what?

Underneath all the fancy greek letters and notation, the Nash Equilibrium tells us a bit more. It says that each agent’s policy in Nash Equilibrium is the best response to the other agents’ optimal policies. No agent is incentivized to change their policy because any tweak gives less reward. In other words, all of the agents are at a standstill. Landlocked. Kind of trapped in a sense.

Multi-Agent RL: Nash Equilibria and Friend or Foe Q-Learning

Photo by NeONBRAND on Unsplash

To give an example, imagine a competitive game between two small robots: C3PO and Wall-E. During each round, they each choose a number one through ten, and whoever selects the higher number wins. As expected, both pick the number ten every time as neither robot wants to risk losing. If C3PO were to choose any other number, he would risk losing against Wall-E’s optimal policy of always choosing ten and vice versa. In other words, the two are at an equilibrium.


以上所述就是小编给大家介绍的《Multi-Agent RL: Nash Equilibria and Friend or Foe Q-Learning》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

疯狂XML讲义

疯狂XML讲义

李刚 / 电子工业出版社 / 2009-11 / 65.00元

《疯狂XML讲义》主要以XML为核心,深入地介绍了XML的各种相关知识。《疯狂XML讲义》作为疯狂Java体系图书之一,依然保持该体系图书系统、全面的特点:不仅详细介绍了XML,文档的各种知识,还通过案例示范了实际开发中如何应用XML知识。 《疯狂XML讲义》主要分为五个部分。第一部分介绍了XML、DTD、XML Schema等基础知识,这些知识主要教读者如何定义有效的XML文档,这部分内容......一起来看看 《疯狂XML讲义》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具