Speed-up inference with Batch Normalization Folding

栏目: IT技术 · 发布时间: 5年前

内容简介:Batch Normalization is a technique which takes care of normalizing the input of each layer to make the training process faster and more stable. In practice, it is an extra layer that we generally add after the computation layer and before the non-linearity

Introduction

Batch Normalization is a technique which takes care of normalizing the input of each layer to make the training process faster and more stable. In practice, it is an extra layer that we generally add after the computation layer and before the non-linearity.

It consists of 2 steps:

  • Normalize the batch by first subtracting its mean μ, then dividing it by its standard deviation σ.
  • Further scale by a factor γ and shift by a factor β. Those are the parameters of the batch normalization layer, required in case of the network not needing the data to have a mean of 0 and a standard deviation of 1.

Speed-up inference with Batch Normalization Folding

Due to its efficiency for training neural networks, batch normalization is now widely used. But how useful is it at inference time?

Once the training has ended, each batch normalization layer possesses a specific set of γ and β, but also μ and σ, the latter being computed using an exponentially weighted average during training. It means that during inference, the batch normalization acts as a simple linear transformation of what comes out of the previous layer, often a convolution.

As a convolution is also a linear transformation, it also means that both operations can be merged into a single linear transformation!

This would remove some unnecessary parameters but also reduce the number of operations to be performed at inference time.


以上所述就是小编给大家介绍的《Speed-up inference with Batch Normalization Folding》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

互联网思想十讲

互联网思想十讲

段永朝 / 商务印书馆 / 2014-10 / 68.00

本书是作者为北京大学新闻与传播学院硕士生开设的《互联网前沿思想》课程的讲义。作者力图从技术、经济和社会的角度,在大尺度上观察互联网究竟根植于什么样的文化土壤。作者选择了复杂性、社会网络分析、公共空间这三个维度展开分析,为读者呈现出了脱胎于工业时代的互联网继承了哪些思想,并对哪些思想做出了彻底的颠覆。一起来看看 《互联网思想十讲》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具