A Full Break of the Bitstream Encryption of Xilinx 7-Series FPGAs

栏目: IT技术 · 发布时间: 5年前

内容简介:Authors:Maik Ender and Amir Moradi,

Authors: 

Maik Ender and Amir Moradi, Horst Goertz Institute for IT Security, Ruhr University Bochum, Germany; Christof Paar, Max Planck Institute for Cyber Security and Privacy and Horst Goertz Institute for IT Security, Ruhr University Bochum, Germany

Abstract: 

The security of FPGAs is a crucial topic, as any vulnerability within the hardware can have severe consequences, if they are used in a secure design. Since FPGA designs are encoded in a bitstream, securing the bitstream is of the utmost importance. Adversaries have many motivations to recover and manipulate the bitstream, including design cloning, IP theft, manipulation of the design, or design subversions e.g., through hardware Trojans. Given that FPGAs are often part of cyber-physical systems e.g., in aviation, medical, or industrial devices, this can even lead to physical harm. Consequently, vendors have introduced bitstream encryption, offering authenticity and confidentiality. Even though attacks against bitstream encryption have been proposed in the past, e.g., side-channel analysis and probing, these attacks require sophisticated equipment and considerable technical expertise.

In this paper, we introduce novel low-cost attacks against the Xilinx 7-Series (and Virtex-6) bitstream encryption, resulting in the total loss of authenticity and confidentiality. We exploit a design flaw which piecewise leaks the decrypted bitstream. In the attack, the FPGA is used as a decryption oracle, while only access to a configuration interface is needed. The attack does not require any sophisticated tools and, depending on the target system, can potentially be launched remotely. In addition to the attacks, we discuss several countermeasures.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone.Support USENIX and our commitment to Open Access.

BibTeX

@inproceedings {251534,

title = {The Unpatchable Silicon: A Full Break of the Bitstream Encryption of Xilinx 7-Series FPGAs},

booktitle = {29th {USENIX} Security Symposium ({USENIX} Security 20)},

year = {2020},

address = {Boston, MA},

url = {https://www.usenix.org/conference/usenixsecurity20/presentation/ender},

publisher = {{USENIX} Association},

month = aug,

}

Download

A Full Break of the Bitstream Encryption of Xilinx 7-Series FPGAs Ender Paper (Prepublication) PDF


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

大数据日知录

大数据日知录

张俊林 / 电子工业出版社 / 2014-9 / 69.00元

大数据是当前最为流行的热点概念之一,其已由技术名词衍生到对很多行业产生颠覆性影响的社会现象,作为最明确的技术发展趋势之一,基于大数据的各种新型产品必将会对每个人的日常生活产生日益重要的影响。 《大数据日知录:架构与算法》从架构与算法角度全面梳理了大数据存储与处理的相关技术。大数据技术具有涉及的知识点异常众多且正处于快速演进发展过程中等特点,其技术点包括底层的硬件体系结构、相关的基础理论、大规......一起来看看 《大数据日知录》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

随机密码生成器
随机密码生成器

多种字符组合密码

MD5 加密
MD5 加密

MD5 加密工具