内容简介:Authors:Maik Ender and Amir Moradi,
Authors:
Maik Ender and Amir Moradi, Horst Goertz Institute for IT Security, Ruhr University Bochum, Germany; Christof Paar, Max Planck Institute for Cyber Security and Privacy and Horst Goertz Institute for IT Security, Ruhr University Bochum, Germany
Abstract:
The security of FPGAs is a crucial topic, as any vulnerability within the hardware can have severe consequences, if they are used in a secure design. Since FPGA designs are encoded in a bitstream, securing the bitstream is of the utmost importance. Adversaries have many motivations to recover and manipulate the bitstream, including design cloning, IP theft, manipulation of the design, or design subversions e.g., through hardware Trojans. Given that FPGAs are often part of cyber-physical systems e.g., in aviation, medical, or industrial devices, this can even lead to physical harm. Consequently, vendors have introduced bitstream encryption, offering authenticity and confidentiality. Even though attacks against bitstream encryption have been proposed in the past, e.g., side-channel analysis and probing, these attacks require sophisticated equipment and considerable technical expertise.
In this paper, we introduce novel low-cost attacks against the Xilinx 7-Series (and Virtex-6) bitstream encryption, resulting in the total loss of authenticity and confidentiality. We exploit a design flaw which piecewise leaks the decrypted bitstream. In the attack, the FPGA is used as a decryption oracle, while only access to a configuration interface is needed. The attack does not require any sophisticated tools and, depending on the target system, can potentially be launched remotely. In addition to the attacks, we discuss several countermeasures.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone.Support USENIX and our commitment to Open Access.
BibTeX
@inproceedings {251534,
title = {The Unpatchable Silicon: A Full Break of the Bitstream Encryption of Xilinx 7-Series FPGAs},
booktitle = {29th {USENIX} Security Symposium ({USENIX} Security 20)},
year = {2020},
address = {Boston, MA},
url = {https://www.usenix.org/conference/usenixsecurity20/presentation/ender},
publisher = {{USENIX} Association},
month = aug,
}
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
自己动手做iOS App
张子怡 / 电子工业出版社 / 2017-8 / 69.00
《自己动手做iOS App:从设计开发到上架App Store》为想要接触iOS 应用设计、开发的读者提供了由浅入深的详细指导。从iOS 应用制作的步骤是什么,应该使用什么软件,如何发布应用到App Store,到iOS 的设计理念是什么,如何正确书写Swift 语言,再到后端和客户端是如何交互运作的等,本书配合图示,精辟、直观地阐明了iOS 应用制作中的种种疑问。 如果你是一位第一次接触i......一起来看看 《自己动手做iOS App》 这本书的介绍吧!