A Full Break of the Bitstream Encryption of Xilinx 7-Series FPGAs

栏目: IT技术 · 发布时间: 4年前

内容简介:Authors:Maik Ender and Amir Moradi,

Authors: 

Maik Ender and Amir Moradi, Horst Goertz Institute for IT Security, Ruhr University Bochum, Germany; Christof Paar, Max Planck Institute for Cyber Security and Privacy and Horst Goertz Institute for IT Security, Ruhr University Bochum, Germany

Abstract: 

The security of FPGAs is a crucial topic, as any vulnerability within the hardware can have severe consequences, if they are used in a secure design. Since FPGA designs are encoded in a bitstream, securing the bitstream is of the utmost importance. Adversaries have many motivations to recover and manipulate the bitstream, including design cloning, IP theft, manipulation of the design, or design subversions e.g., through hardware Trojans. Given that FPGAs are often part of cyber-physical systems e.g., in aviation, medical, or industrial devices, this can even lead to physical harm. Consequently, vendors have introduced bitstream encryption, offering authenticity and confidentiality. Even though attacks against bitstream encryption have been proposed in the past, e.g., side-channel analysis and probing, these attacks require sophisticated equipment and considerable technical expertise.

In this paper, we introduce novel low-cost attacks against the Xilinx 7-Series (and Virtex-6) bitstream encryption, resulting in the total loss of authenticity and confidentiality. We exploit a design flaw which piecewise leaks the decrypted bitstream. In the attack, the FPGA is used as a decryption oracle, while only access to a configuration interface is needed. The attack does not require any sophisticated tools and, depending on the target system, can potentially be launched remotely. In addition to the attacks, we discuss several countermeasures.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone.Support USENIX and our commitment to Open Access.

BibTeX

@inproceedings {251534,

title = {The Unpatchable Silicon: A Full Break of the Bitstream Encryption of Xilinx 7-Series FPGAs},

booktitle = {29th {USENIX} Security Symposium ({USENIX} Security 20)},

year = {2020},

address = {Boston, MA},

url = {https://www.usenix.org/conference/usenixsecurity20/presentation/ender},

publisher = {{USENIX} Association},

month = aug,

}

Download

A Full Break of the Bitstream Encryption of Xilinx 7-Series FPGAs Ender Paper (Prepublication) PDF


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

社会工程

社会工程

海德纳吉 (Christopher Hadnagy) / 陆道宏、杜娟、邱璟 / 人民邮电出版社 / 2013-12 / 59.00元

本书首次从技术层面剖析和解密社会工程手法,从攻击者的视角详细介绍了社会工程的所有方面,包括诱导、伪装、心理影响和人际操纵等,并通过凯文 · 米特尼克等社会工程大师的真实故事和案例加以阐释,探讨了社会工程的奥秘。主要内容包括黑客、间谍和骗子所使用的欺骗手法,以及防止社会工程威胁的关键步骤。 本书适用于社会工程师、对社会工程及信息安全感兴趣的人。一起来看看 《社会工程》 这本书的介绍吧!

MD5 加密
MD5 加密

MD5 加密工具

SHA 加密
SHA 加密

SHA 加密工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换