What Explainable AI fails to explain (and how we fix that)

栏目: IT技术 · 发布时间: 5年前

What Explainable AI fails to explain (and how we fix that)

Note that in small datasets with 10 classes i.e., CIFAR10, we can find WordNet hypotheses for all nodes. However, in large datasets with 1000 classes i.e., ImageNet, we can only find WordNet hypotheses for a subset of nodes.

Trying NBDTs in under a minute

Interested in trying out an NBDT, now ? Without installing anything, you can view more example outputs online and even try out our web demo . Alternatively, use our command-line utility to run inference (Install with pip install nbdt). Below, we run inference on a picture of a cat .

nbdt https://images.pexels.com/photos/126407/pexels-photo-126407.jpeg?auto=compress&cs=tinysrgb&dpr=2&w=32 # this can also be a path to local image

This outputs both the class prediction and all the intermediate decisions.

Prediction: cat // Decisions: animal (99.47%), chordate (99.20%), carnivore (99.42%), cat (99.86%)

You can load a pretrained NBDT in just a few lines of Python as well. Use the following to get started. We support several neural networks and datasets.

from nbdt.model import HardNBDTfrom nbdt.models import wrn28_10_cifar10model = wrn28_10_cifar10()model = HardNBDT( pretrained=True, dataset='CIFAR10', arch='wrn28_10_cifar10', model=model)

For reference, see the script for the command-line tool we ran above; only ~20 lines are directly involved in transforming the input and running inference. For more instructions on getting started and examples, see our Github repository .

How it Works

The training and inference process for a Neural-Backed Decision Tree can be broken down into four steps.

Training an NBDT occurs in two phases: First, construct the hierarchy for the decision tree. Second, train the neural network with a special loss term. To run inference, pass the sample through the neural network backbone. Finally, run the last fully-connected layer as a sequence of decision rules.
  1. Construct a hierarchy for the decision tree. This hierarchy determines which sets of classes the NBDT must decide between. We refer to this hierarchy as an Induced Hierarchy .
  2. This hierarchy yields a particular loss function, that we call the Tree Supervision Loss ⁵. Train the original neural network, without any modifications , using this new loss.
  3. Start inference by passing the sample through the neural network backbone. The backbone is all neural network layers before the final fully-connected layer.
  4. Finish inference by running the final fully-connected layer as a sequence of decision rules, which we call Embedded Decision Rules . These decisions culminate in the final prediction.

For more detail, see our paper (Sec 3).

Conclusion

Explainable AI does not fully explain how the neural network reaches a prediction: Existing methods explain the image’s impact on model predictions but do not explain the decision process. Decision trees address this, but unfortunately, images⁷ are kryptonite for decision tree accuracy.

We thus combine neural networks and decision trees. Unlike predecessors that arrived at the same hybrid design, our neural-backed decision trees (NBDTs) simultaneously address the failures (1) of neural networks to provide justification and (2) of decision trees to attain high accuracy. This primes a new category of accurate, interpretable NBDTs for applications like medicine and finance. To get started, see the project page .

By Alvin Wan , * Lisa Dunlap , * Daniel Ho , Jihan Yin , Scott Lee , Henry Jin , Suzanne Petryk , Sarah Adel Bargal , Joseph E. Gonzalez

where * denotes equal contribution


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

世界是平的

世界是平的

[美] 托马斯·弗里德曼 / 何帆、肖莹莹、郝正非 / 湖南科学技术出版社 / 2006-11 / 56.00元

当学者们讨论世界这20年发展的历史,并把目光聚集在2000年到2004年3月这一段时间时,他们将说些什么?9·11恐怖袭击还是伊拉克战争?或者,他们将讨论:科技的汇集与传播使得印度、中国和许多发展中国家成为世界商品和服务产品供给链上的一员,从而为世界大的发展中国家中的中产阶级带来了大量的财富,使这两个国家在全球化浪潮中占据更有利的位置?随着世界变得平坦,我们必须以更快的速度前进,才能在竞争中赢得胜......一起来看看 《世界是平的》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

html转js在线工具
html转js在线工具

html转js在线工具