内容简介:This is a sequel to theprevious post about Pratt parsing. Here, we’ll study the relationship between top-down operator precedence (Pratt parsing) and the more famous shunting yard algorithm. Spoiler: they are the same algorithm, the difference is implement
This is a sequel to theprevious post about Pratt parsing. Here, we’ll study the relationship between top-down operator precedence (Pratt parsing) and the more famous shunting yard algorithm. Spoiler: they are the same algorithm, the difference is implementation style with recursion (Pratt) or a manual stack (Dijkstra).
Unlike the previous educational post, this one is going to be an excruciatingly boring pile of technicalities — we’ll just slowly and mechanically refactor our way to victory. Really, the most exciting bit about this post is the conclusion, and you already know it
Starting Point
Last time, we’ve ended up with the following code:
enum S { Atom(char), Cons(char, Vec<S>), } impl fmt::Display for S { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { S::Atom(i) => write!(f, "{}", i), S::Cons(head, rest) => { write!(f, "({}", head)?; for s in rest { write!(f, " {}", s)? } write!(f, ")") } } } } #[derive(Debug, Clone, Copy, PartialEq, Eq)] enum Token { Atom(char), Op(char), Eof, } struct Lexer { tokens: Vec<Token>, } impl Lexer { fn new(input: &str) -> Lexer { let mut tokens = input .chars() .filter(|it| !it.is_ascii_whitespace()) .map(|c| match c { '0'..='9' | 'a'..='z' | 'A'..='Z' => Token::Atom(c), _ => Token::Op(c), }) .collect::<Vec<_>>(); tokens.reverse(); Lexer { tokens } } fn next(&mut self) -> Token { self.tokens.pop().unwrap_or(Token::Eof) } fn peek(&mut self) -> Token { self.tokens.last().copied().unwrap_or(Token::Eof) } } fn expr(input: &str) -> S { let mut lexer = Lexer::new(input); expr_bp(&mut lexer, 0) } fn expr_bp(lexer: &mut Lexer, min_bp: u8) -> S { let mut lhs = match lexer.next() { Token::Atom(it) => S::Atom(it), Token::Op('(') => { let lhs = expr_bp(lexer, 0); assert_eq!(lexer.next(), Token::Op(')')); lhs } Token::Op(op) => { let ((), r_bp) = prefix_binding_power(op); let rhs = expr_bp(lexer, r_bp); S::Cons(op, vec![rhs]) } t => panic!("bad token: {:?}", t), }; loop { let op = match lexer.peek() { Token::Eof => break, Token::Op(op) => op, t => panic!("bad token: {:?}", t), }; if let Some((l_bp, ())) = postfix_binding_power(op) { if l_bp < min_bp { break; } lexer.next(); lhs = if op == '[' { let rhs = expr_bp(lexer, 0); assert_eq!(lexer.next(), Token::Op(']')); S::Cons(op, vec![lhs, rhs]) } else { S::Cons(op, vec![lhs]) }; continue; } if let Some((l_bp, r_bp)) = infix_binding_power(op) { if l_bp < min_bp { break; } lexer.next(); lhs = if op == '?' { let mhs = expr_bp(lexer, 0); assert_eq!(lexer.next(), Token::Op(':')); let rhs = expr_bp(lexer, r_bp); S::Cons(op, vec![lhs, mhs, rhs]) } else { let rhs = expr_bp(lexer, r_bp); S::Cons(op, vec![lhs, rhs]) }; continue; } break; } lhs } fn prefix_binding_power(op: char) -> ((), u8) { match op { '+' | '-' => ((), 9), _ => panic!("bad op: {:?}", op), } } fn postfix_binding_power(op: char) -> Option<(u8, ())> { let res = match op { '!' => (11, ()), '[' => (11, ()), _ => return None, }; Some(res) } fn infix_binding_power(op: char) -> Option<(u8, u8)> { let res = match op { '=' => (2, 1), '?' => (4, 3), '+' | '-' => (5, 6), '*' | '/' => (7, 8), '.' => (14, 13), _ => return None, }; Some(res) }
First, to not completely drown in minutia, we’ll simplify it by removing support for indexing operator []
and ternary operator ?:
.
We will keep parenthesis, left and right associative operators, and the unary minus (which is somewhat tricky to handle in shunting yard).
So this is our starting point:
fn expr_bp(lexer: &mut Lexer, min_bp: u8) -> S { let mut lhs = match lexer.next() { Token::Atom(it) => S::Atom(it), Token::Op('(') => { let lhs = expr_bp(lexer, 0); assert_eq!(lexer.next(), Token::Op(')')); lhs } Token::Op(op) => { let ((), r_bp) = prefix_binding_power(op); let rhs = expr_bp(lexer, r_bp); S::Cons(op, vec![rhs]) } t => panic!("bad token: {:?}", t), }; loop { let op = match lexer.peek() { Token::Eof => break, Token::Op(op) => op, t => panic!("bad token: {:?}", t), }; if let Some((l_bp, ())) = postfix_binding_power(op) { if l_bp < min_bp { break; } lexer.next(); lhs = S::Cons(op, vec![lhs]); continue; } if let Some((l_bp, r_bp)) = infix_binding_power(op) { if l_bp < min_bp { break; } lexer.next(); let rhs = expr_bp(lexer, r_bp); lhs = S::Cons(op, vec![lhs, rhs]); continue; } break; } lhs }
What I like about this code is how up-front it is about all special cases and control flow. This is a “shameless green” code! However, it is clear that we have a bunch of duplication between prefix, infix and postfix operators. Our first step would be to simplify the control flow to its core.
Minimization
First, let’s merge postfix and infix cases, as they are almost the same.
The idea is to change priorities for !
from (11, ())
to (11, 100)
, where 100
is a special, very strong priority, which means that the right hand side of a "binary" operator is empty.
We’ll handle this in a pretty crude way right now, but all the hacks would go away once we refactor the rest.
fn expr_bp(lexer: &mut Lexer, min_bp: u8) -> Option<S> { if min_bp == 100 { return None; } let mut lhs = match lexer.next() { Token::Atom(it) => S::Atom(it), Token::Op('(') => { let lhs = expr_bp(lexer, 0).unwrap(); assert_eq!(lexer.next(), Token::Op(')')); lhs } Token::Op(op) => { let ((), r_bp) = prefix_binding_power(op); let rhs = expr_bp(lexer, r_bp).unwrap(); S::Cons(op, vec![rhs]) } t => panic!("bad token: {:?}", t), }; loop { let op = match lexer.peek() { Token::Eof => break, Token::Op(op) => op, t => panic!("bad token: {:?}", t), }; if let Some((l_bp, r_bp)) = infix_binding_power(op) { if l_bp < min_bp { break; } lexer.next(); let rhs = expr_bp(lexer, r_bp); let mut args = Vec::new(); args.push(lhs); args.extend(rhs); lhs = S::Cons(op, args); continue; } break; } Some(lhs) }
Yup, we just check for hard-coded 100
constant and use a bunch of unwraps all over the place.
But the code is already smaller.
Let’s apply the same treatment for prefix operators.
We’ll need to move their handing into the loop, and we also need to make lhs
optional, which is now not a big deal, as the function as a whole returns an Option
.
On a happier note, this will allow us to remove the if 100
wart.
What’s more problematic is handing priorities: minus has different binding powers depending on whether it is in an infix or a prefix position.
We solve this problem by just adding an prefix: bool
argument to the binding_power
function.
fn expr_bp(lexer: &mut Lexer, min_bp: u8) -> Option<S> { let mut lhs = match lexer.peek() { Token::Atom(it) => { lexer.next(); Some(S::Atom(it)) } Token::Op('(') => { lexer.next(); let lhs = expr_bp(lexer, 0).unwrap(); assert_eq!(lexer.next(), Token::Op(')')); Some(lhs) } _ => None, }; loop { let op = match lexer.peek() { Token::Eof => break, Token::Op(op) => op, t => panic!("bad token: {:?}", t), }; if let Some((l_bp, r_bp)) = binding_power(op, lhs.is_none()) { if l_bp < min_bp { break; } lexer.next(); let rhs = expr_bp(lexer, r_bp); let mut args = Vec::new(); args.extend(lhs); args.extend(rhs); lhs = Some(S::Cons(op, args)); continue; } break; } lhs } fn binding_power(op: char, prefix: bool) -> Option<(u8, u8)> { let res = match op { '=' => (2, 1), '+' | '-' if prefix => (99, 9), '+' | '-' => (5, 6), '*' | '/' => (7, 8), '!' => (11, 100), '.' => (14, 13), _ => return None, }; Some(res) }
Keen readers might have noticed that we use 99
and not 100
here for "no operand" case.
This is not important yet, but will be during the next step.
We’ve unified prefix, infix and postfix operators.
The next logical step is to treat atoms as nullary operators!
That is, we’ll parse 92
into (92)
S-expression, with None
for both lhs
and rhs
.
We get this by using (99, 100)
binding power.
At this stage, we can get rid of distinction between atom tokens and operator tokens, and make the lexer return underlying char
's directly.
We’ll also get rid of S::Atom
, which gives us this somewhat large change:
enum S { Cons(char, Vec<S>), } impl fmt::Display for S { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { S::Cons(head, rest) => { if rest.is_empty() { write!(f, "{}", head) } else { write!(f, "({}", head)?; for s in rest { write!(f, " {}", s)? } write!(f, ")") } } } } } struct Lexer { tokens: Vec<char>, } impl Lexer { fn new(input: &str) -> Lexer { let mut tokens = input .chars() .filter(|it| !it.is_ascii_whitespace()) .collect::<Vec<_>>(); tokens.reverse(); Lexer { tokens } } fn next(&mut self) -> Option<char> { self.tokens.pop() } fn peek(&mut self) -> Option<char> { self.tokens.last().copied() } } fn expr(input: &str) -> S { let mut lexer = Lexer::new(input); expr_bp(&mut lexer, 0).unwrap() } fn expr_bp(lexer: &mut Lexer, min_bp: u8) -> Option<S> { let mut lhs = match lexer.peek() { Some('(') => { lexer.next(); let lhs = expr_bp(lexer, 0).unwrap(); assert_eq!(lexer.next(), Some(')')); Some(lhs) } _ => None, }; loop { let token = match lexer.peek() { Some(token) => token, None => break, }; if let Some((l_bp, r_bp)) = binding_power(token, lhs.is_none()) { if l_bp < min_bp { break; } lexer.next(); let rhs = expr_bp(lexer, r_bp); let mut args = Vec::new(); args.extend(lhs); args.extend(rhs); lhs = Some(S::Cons(token, args)); continue; } break; } lhs } fn binding_power(op: char, prefix: bool) -> Option<(u8, u8)> { let res = match op { '0'..='9' | 'a'..='z' | 'A'..='Z' => (99, 100), '=' => (2, 1), '+' | '-' if prefix => (99, 9), '+' | '-' => (5, 6), '*' | '/' => (7, 8), '!' => (11, 100), '.' => (14, 13), _ => return None, }; Some(res) }
This is the stage where it becomes important that "fake" binding power of unary -
is 99
.
After parsing first constant in 1 - 2
the r_bp
is 100
, and we need to avoid eating the following minus.
The only thing left outside the main loop are parenthesis.
We can deal with them using (99, 0)
priority — after (
we enter a new context where all operators are allowed.
fn expr_bp(lexer: &mut Lexer, min_bp: u8) -> Option<S> { let mut lhs = None; loop { let token = match lexer.peek() { Some(token) => token, None => break, }; if let Some((l_bp, r_bp)) = binding_power(token, lhs.is_none()) { if l_bp < min_bp { break; } lexer.next(); let rhs = expr_bp(lexer, r_bp); if token == '(' { assert_eq!(lexer.next(), Some(')')); lhs = rhs; continue; } let mut args = Vec::new(); args.extend(lhs); args.extend(rhs); lhs = Some(S::Cons(token, args)); continue; } break; } lhs } fn binding_power(op: char, prefix: bool) -> Option<(u8, u8)> { let res = match op { '0'..='9' | 'a'..='z' | 'A'..='Z' => (99, 100), '(' => (99, 0), '=' => (2, 1), '+' | '-' if prefix => (99, 9), '+' | '-' => (5, 6), '*' | '/' => (7, 8), '!' => (11, 100), '.' => (14, 13), _ => return None, }; Some(res) }
Or, after some control flow cleanup:
fn expr_bp(lexer: &mut Lexer, min_bp: u8) -> Option<S> { let mut lhs = None; loop { let token = match lexer.peek() { Some(token) => token, None => return lhs, }; let r_bp = match binding_power(token, lhs.is_none()) { Some((l_bp, r_bp)) if min_bp <= l_bp => r_bp, _ => return lhs, }; lexer.next(); let rhs = expr_bp(lexer, r_bp); if token == '(' { assert_eq!(lexer.next(), Some(')')); lhs = rhs; continue; } let mut args = Vec::new(); args.extend(lhs); args.extend(rhs); lhs = Some(S::Cons(token, args)); } }
This is still recognizably a Pratt parse, with its characteristic shape
fn parse_expr() { loop { ... parse_expr() ... } }
What we’ll do next is mechanical replacement of recursion with a manual stack.
From Recursion to Stack
This is a general transformation and (I think) it can be done mechanically.
The interesting bits during transformation are recursive calls themselves and returns.
The underlying goal of the preceding refactorings was to reduce the number of recursive invocations to one.
We still have two return
statements there, so let’s condense that to just one as well:
fn expr_bp(lexer: &mut Lexer, min_bp: u8) -> Option<S> { let mut lhs = None; loop { let token = lexer.peek(); let (token, r_bp) = match binding_power(token, lhs.is_none()) { Some((t, (l_bp, r_bp))) if min_bp <= l_bp => { (t, r_bp) } _ => return lhs, }; lexer.next(); let rhs = expr_bp(lexer, r_bp); if token == '(' { assert_eq!(lexer.next(), Some(')')); lhs = rhs; continue; } let mut args = Vec::new(); args.extend(lhs); args.extend(rhs); lhs = Some(S::Cons(token, args)); } } fn binding_power( op: Option<char>, prefix: bool, ) -> Option<(char, (u8, u8))> { let op = op?; let res = match op { '0'..='9' | 'a'..='z' | 'A'..='Z' => (99, 100), '(' => (99, 0), '=' => (2, 1), '+' | '-' if prefix => (99, 9), '+' | '-' => (5, 6), '*' | '/' => (7, 8), '!' => (11, 100), '.' => (14, 13), _ => return None, }; Some((op, res)) }
Next, we should reify locals which are live across the recursive call into a data structure. If there were more than one recursive call, we’d have to reify control-flow as enum as well, but we’ve prudently removed all but one recursive invocation.
So let’s start with introducing a Frame
struct, without actually adding a stack just yet.
struct Frame { min_bp: u8, lhs: Option<S>, token: Option<char>, } fn expr_bp(lexer: &mut Lexer, min_bp: u8) -> Option<S> { let mut top = Frame { min_bp, lhs: None, token: None, }; loop { let token = lexer.peek(); let (token, r_bp) = match binding_power(token, top.lhs.is_none()) { Some((t, (l_bp, r_bp))) if top.min_bp <= l_bp => { (t, r_bp) } _ => return top.lhs, }; lexer.next(); top.token = Some(token); let rhs = expr_bp(lexer, r_bp); if token == '(' { assert_eq!(lexer.next(), Some(')')); top.lhs = rhs; continue; } let mut args = Vec::new(); args.extend(top.lhs); args.extend(rhs); top.lhs = Some(S::Cons(token, args)); } }
And now, let’s add a stack: Vec<Frame>
.
This is the point where the magic happens.
We’ll still keep the top
local variable: representing a stack as (T, Vec<T>)
and not as just Vec<T>
gives us compile-time guarantee of non-emptiness.
We replace the expr_bp(lexer, r_bp)
recursive call with pushing to the stack.
All operations after the call are moved after return
. return
itself is replaced with popping off the stack.
fn expr_bp(lexer: &mut Lexer) -> Option<S> { let mut top = Frame { min_bp: 0, lhs: None, token: None, }; let mut stack = Vec::new(); loop { let token = lexer.peek(); let (token, r_bp) = match binding_power(token, top.lhs.is_none()) { Some((t, (l_bp, r_bp))) if top.min_bp <= l_bp => { (t, r_bp) } _ => { let res = top; top = match stack.pop() { Some(it) => it, None => return res.lhs, }; if res.token == Some('(') { assert_eq!(lexer.next(), Some(')')); top.lhs = res.lhs; continue; } let mut args = Vec::new(); args.extend(top.lhs); args.extend(res.lhs); top.lhs = Some(S::Cons(res.token.unwrap(), args)); continue; } }; lexer.next(); stack.push(top); top = Frame { min_bp: r_bp, lhs: None, token: Some(token), }; } }
Tada! No recursion anymore, and still passes the tests!
Let’s cleanup this further though.
First, let’s treat )
more like a usual operator.
The correct binding powers here are the opposite of (
: (0, 100)
:
fn expr_bp(lexer: &mut Lexer) -> Option<S> { let mut top = Frame { min_bp: 0, lhs: None, token: None, }; let mut stack = Vec::new(); loop { let token = lexer.peek(); let (token, r_bp) = match binding_power(token, top.lhs.is_none()) { Some((t, (l_bp, r_bp))) if top.min_bp <= l_bp => { (t, r_bp) } _ => { let res = top; top = match stack.pop() { Some(it) => it, None => return res.lhs, }; let mut args = Vec::new(); args.extend(top.lhs); args.extend(res.lhs); top.lhs = Some(S::Cons(res.token.unwrap(), args)); continue; } }; lexer.next(); if token == ')' { assert_eq!(top.token, Some('(')); let res = top; top = stack.pop().unwrap(); top.lhs = res.lhs; continue; } stack.push(top); top = Frame { min_bp: r_bp, lhs: None, token: Some(token), }; } } fn binding_power( op: Option<char>, prefix: bool, ) -> Option<(char, (u8, u8))> { let op = op?; let res = match op { '0'..='9' | 'a'..='z' | 'A'..='Z' => (99, 100), '(' => (99, 0), ')' => (0, 100), '=' => (2, 1), '+' | '-' if prefix => (99, 9), '+' | '-' => (5, 6), '*' | '/' => (7, 8), '!' => (11, 100), '.' => (14, 13), _ => return None, }; Some((op, res)) }
Finally, let’s note that continue
inside the match
is somewhat wasteful — when we hit it, we’ll re- peek
the same token again.
So let’s repeat just the match until we know we can make progress.
This also allows replacing peek() / next()
pair with just next()
.
fn expr_bp(lexer: &mut Lexer) -> Option<S> { let mut top = Frame { min_bp: 0, lhs: None, token: None, }; let mut stack = Vec::new(); loop { let token = lexer.next(); let (token, r_bp) = loop { match binding_power(token, top.lhs.is_none()) { Some((t, (l_bp, r_bp))) if top.min_bp <= l_bp => { break (t, r_bp) } _ => { let res = top; top = match stack.pop() { Some(it) => it, None => return res.lhs, }; let mut args = Vec::new(); args.extend(top.lhs); args.extend(res.lhs); top.lhs = Some(S::Cons(res.token.unwrap(), args)); } }; }; if token == ')' { assert_eq!(top.token, Some('(')); let res = top; top = stack.pop().unwrap(); top.lhs = res.lhs; continue; } stack.push(top); top = Frame { min_bp: r_bp, lhs: None, token: Some(token), }; } }
And guess what? This is the shunting yard algorithm, with its characteristic shape of
loop { let token = next_token(); while stack.top.priority > token.priority { stack.pop() } }
To drive the point home, let’s print the tokens we pop off the stack, to verify that we get reverse Polish notation without any kind of additional tree rearrangement, just like in the original algorithm description:
use std::{fmt, io::BufRead}; enum S { Cons(char, Vec<S>), } impl fmt::Display for S { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { S::Cons(head, rest) => { if rest.is_empty() { write!(f, "{}", head) } else { write!(f, "({}", head)?; for s in rest { write!(f, " {}", s)? } write!(f, ")") } } } } } struct Lexer { tokens: Vec<char>, } impl Lexer { fn new(input: &str) -> Lexer { let mut tokens = input .chars() .filter(|it| !it.is_ascii_whitespace()) .collect::<Vec<_>>(); tokens.reverse(); Lexer { tokens } } fn next(&mut self) -> Option<char> { self.tokens.pop() } } fn expr(input: &str) -> S { let mut lexer = Lexer::new(input); eprintln!("{}", input); let res = expr_bp(&mut lexer).unwrap(); eprintln!("{}\n", res); res } struct Frame { min_bp: u8, lhs: Option<S>, token: Option<char>, } fn expr_bp(lexer: &mut Lexer) -> Option<S> { let mut top = Frame { min_bp: 0, lhs: None, token: None, }; let mut stack = Vec::new(); loop { let token = lexer.next(); let (token, r_bp) = loop { match binding_power(token, top.lhs.is_none()) { Some((t, (l_bp, r_bp))) if top.min_bp <= l_bp =>{ break (t, r_bp) } _ => { let res = top; top = match stack.pop() { Some(it) => it, None => { eprintln!(); return res.lhs; } }; let mut args = Vec::new(); args.extend(top.lhs); args.extend(res.lhs); let token = res.token.unwrap(); eprint!("{} ", token); top.lhs = Some(S::Cons(token, args)); } }; }; if token == ')' { assert_eq!(top.token, Some('(')); let res = top; top = stack.pop().unwrap(); top.lhs = res.lhs; continue; } stack.push(top); top = Frame { min_bp: r_bp, lhs: None, token: Some(token), }; } } fn binding_power( op: Option<char>, prefix: bool, ) -> Option<(char, (u8, u8))> { let op = op?; let res = match op { '0'..='9' | 'a'..='z' | 'A'..='Z' => (99, 100), '(' => (99, 0), ')' => (0, 100), '=' => (2, 1), '+' | '-' if prefix => (99, 9), '+' | '-' => (5, 6), '*' | '/' => (7, 8), '!' => (11, 100), '.' => (14, 13), _ => return None, }; Some((op, res)) } #[test] fn tests() { let s = expr("1"); assert_eq!(s.to_string(), "1"); let s = expr("1 + 2 * 3"); assert_eq!(s.to_string(), "(+ 1 (* 2 3))"); let s = expr("a + b * c * d + e"); assert_eq!(s.to_string(), "(+ (+ a (* (* b c) d)) e)"); let s = expr("f . g . h"); assert_eq!(s.to_string(), "(. f (. g h))"); let s = expr(" 1 + 2 + f . g . h * 3 * 4"); assert_eq!( s.to_string(), "(+ (+ 1 2) (* (* (. f (. g h)) 3) 4))" ); let s = expr("--1 * 2"); assert_eq!(s.to_string(), "(* (- (- 1)) 2)"); let s = expr("--f . g"); assert_eq!(s.to_string(), "(- (- (. f g)))"); let s = expr("-9!"); assert_eq!(s.to_string(), "(- (! 9))"); let s = expr("f . g !"); assert_eq!(s.to_string(), "(! (. f g))"); let s = expr("(((0)))"); assert_eq!(s.to_string(), "0"); let s = expr("(1 + 2) * 3"); assert_eq!(s.to_string(), "(* (+ 1 2) 3)"); let s = expr("1 + (2 * 3)"); assert_eq!(s.to_string(), "(+ 1 (* 2 3))"); }
1 1 1 1 + 2 * 3 1 2 3 * + (+ 1 (* 2 3)) a + b * c * d + e a b c * d * + e + (+ (+ a (* (* b c) d)) e) f . g . h f g h . . (. f (. g h)) 1 + 2 + f . g . h * 3 * 4 1 2 + f g h . . 3 * 4 * + (+ (+ 1 2) (* (* (. f (. g h)) 3) 4)) --1 * 2 1 - - 2 * (* (- (- 1)) 2) --f . g f g . - - (- (- (. f g))) -9! 9 ! - (- (! 9)) f . g ! f g . ! (! (. f g)) (((0))) 0 0 (1 + 2) * 3 1 2 + 3 * (* (+ 1 2) 3) 1 + (2 * 3) 1 2 3 * + (+ 1 (* 2 3))
We actually could have done it with the original recursive formulation as well.
Placing print
statements at all points where we construct an S
node prints expression in a reverse polish notation,
proving that the recursive algorithm does the same steps and in the same order as the shunting yard.
Q.E.D.
The code from this and the previous article is available here: https://github.com/matklad/minipratt .
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。