简单几步,教你使用scikit-learn做分类和回归预测

栏目: IT技术 · 发布时间: 4年前

前言

scikit-learn是基于 Python 的一个机器学习库,你可以在scikit-learn库中选择合适的模型,使用它训练数据集并对新数据集作出预测。 简单几步,教你使用scikit-learn做分类和回归预测

对于初学者来说,有一个共同的困惑:怎么使用scikit-learn库中的模型做预测?本文的目的就是解答这个困惑,手把手地教你使用机器学习模型。

分以下三点内容:

  • 针对特定的预测如何选择合适的模型

  • 什么是分类预测

  • 什么是回归预测

废话不多说,让我们开始吧!

一、选择模型

模型选择是机器学习的第一步。

你可以使用K折交叉验证或者分割训练集/测试集的方法处理数据集,并用来训练模型。这样做为了能够让训练出来的模型对新数据集做出预测。

还要判断该问题是分类问题还是回归问题。

分类问题预测的是类别、标签,一般来说是二分类即(0,1),比如是否下雨。

回归问题预测的是连续的数值,比如股票的价格。

二、如何使用分类模型

分类问题是指模型学习输入特征和输出标签之间的映射关系,然后对新的输入预测标签。

拿识别垃圾邮件举例,输入的是邮件的文本、时间、标题等等特征,而输出的则是垃圾邮件和非垃圾邮件两个标签。

模型通过训练数据集,学习特征与标签的关系,才能做出预测。

下面给出一个简单的,针对二进制分类问题的LogisticRegression(逻辑回归)模型代码示例。

虽然我们用的是LogisticRegression(逻辑回归)分类模型解决问题,但scikit-learn中的其它分类模型同样适用。

# 导入LogisticRegression方法
from sklearn.linear_model import LogisticRegression
# 导入数据生成器
from sklearn.datasets.samples_generator import make_blobs
# 生成2维数据,类别是2类
X, y = make_blobs(n_samples=100, centers=2, n_features=2, random_state=1)
# 训练模型
model = LogisticRegression()
model.fit(X, y)

注:make_blobs为聚类数据生成器

这里特别介绍两种分类预测的模型,类别预测和概率预测。

1、类别预测

类别预测:给定模型并训练数据实例后,通过scikit-learn的predict()函数预测新数据实例的类别。

比如,Xnew数组中有一个或多个数据实例,这个数组可以传递给predict()函数,用来预测每个实例的类别。

Xnew = [[...], [...]]
ynew = model.predict(Xnew)

输入代码:

# 类别预测案例
from sklearn.linear_model import LogisticRegression
from sklearn.datasets.samples_generator import make_blobs
# 生成数据集,有100个实列即100行,目标类别有2个:(0,1)
X, y = make_blobs(n_samples=100, centers=2, n_features=2, random_state=1)
# 拟合模型
model = LogisticRegression()
model.fit(X, y)

# 生成新的预测数据集,有3个实例。这里的新实例可以为1个或多个
Xnew, _ = make_blobs(n_samples=3, centers=2, n_features=2, random_state=1)
# 开始预测
ynew = model.predict(Xnew)
# 展示类别的预测结果
print('预测类别:')
for i in range(len(Xnew)):
	print("X=%s, Predicted=%s" % (Xnew[i], ynew[i]))
# 展示数据集真实类别
print('真实类别:')
for i in range(len(Xnew)):
	print("X=%s, Predicted=%s" % (Xnew[i], _[i]))

输出结果: 简单几步,教你使用scikit-learn做分类和回归预测

可以看到,预测值和真实值一样,说明准确率100%。

  • 关于字符串类别标签的小提示

有时候,数据集的类别可能是字符串,比如(是,否)、(热,冷)等,但模型并不接受字符串输入输出,必须将字符串类别转化为整数的形式,比如(1,0)对应(是,否)。

scikit-learn提供LabelEncoder函数,用以将字符串转换为整数。

2、概率预测

另一种分类模型是预测数据实例属于每个类别的概率,如果有2个类别(0,1),则预测输出值为0的概率和1概率。

比如,Xnew数组中有一个或多个数据实例,这个数组可以传递给predict_proba()函数,用来预测每个实例的类别。

Xnew = [[...], [...]]
ynew = model.predict_proba(Xnew)

概率预测只适用于能够进行概率预测的模型,大多数(不是全部)模型可以做到。

下面的例子,通过训练好的模型对Xnew数组中的每个实例进行概率预测。

输入代码:

# 概率预测案例
from sklearn.linear_model import LogisticRegression
from sklearn.datasets.samples_generator import make_blobs
# 生成数据集,有100个实列即100行,目标类别有2个:(0,1)
X, y = make_blobs(n_samples=100, centers=2, n_features=2, random_state=1)
# 训练模型
model = LogisticRegression()
model.fit(X, y)

# 生成新的预测集,有3个实例即3行
Xnew, _ = make_blobs(n_samples=3, centers=2, n_features=2, random_state=1)
# 开始预测
ynew = model.predict_proba(Xnew)
# 展示预测的类别概率,分别生成为0的概率和为1的概率
print('预测的类别概率:')
for i in range(len(Xnew)):
	print("X=%s, Predicted=%s" % (Xnew[i], ynew[i]))
print('真实类别:')
for i in range(len(Xnew)):
	print("X=%s, Predicted=%s" % (Xnew[i], _[i]))

输出结果: 简单几步,教你使用scikit-learn做分类和回归预测

概率预测的输出可以理解为:输出每个类别的概率,有多少个类别就有多少个概率值。

三、如何使用回归模型

回归预测和分类预测一样,都是一种监督学习。通过训练给定的示例即训练集,模型学习到输入特征和输出值之间的映射关系,如输出值为0.1,0.4,0.8......

下面代码用的最常见的LinearRegression线性回归预测模型,当然你也可以用其它所有回归模型来实践它。

输入代码:

# 线性回归预测案例
# 导入相关方法
from sklearn.linear_model import LinearRegression
from sklearn.datasets import make_regression
# 生成随机回归训练数据集,有100个实列即100行
X, y = make_regression(n_samples=100, n_features=2, noise=0.1, random_state=1)
# 拟合模型
model = LinearRegression()
model.fit(X, y)

# 生成新的预测集,有3个实例即3行
Xnew, _ = make_regression(n_samples=3, n_features=2, noise=0.1, random_state=1)
# 开始预测
ynew = model.predict(Xnew)
# 展示预测的值
print('预测值:')
for i in range(len(Xnew)):
	print("X=%s, Predicted=%s" % (Xnew[i], ynew[i]))
# 展示真实的值
print('真实值:')
for i in range(len(Xnew)):
	print("X=%s, Real=%s" % (Xnew[i], _[i]))

注:make_regression函数为随机回归数据集生成器

输出结果: 简单几步,教你使用scikit-learn做分类和回归预测

四、总结

本文分别用scikit-learn库中的分类模型和回归模型做了预测,并解释了这两种预测模型的区别,你也可以探索其它相关函数并实现文中的案例。

注: 参考翻译Jason Brownlee博士的博客

精彩回顾

Python网络爬虫与文本数据分析

如何使用Python快速构建领域内情感词典

Seaborn:一行代码生成酷炫狂拽的数据集可视化

pdfkit | 自动化利器,生成PDF就靠它了

中文文本数据逻辑性分析库

中文文本分析相关资源汇总

cnsenti中文情绪情感分析库

Python全栈-60天精通之路

Python数据分析相关学习资源汇总帖

漂亮~pandas可以无缝衔接Bokeh

综述:文本分析在市场营销研究中的应用

2020年B站跨年晚会弹幕内容分析

YelpDaset: 酒店管理类数据集10+G

Loughran&McDonald金融文本情感分析库


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

超简单!一学就懂的互联网金融

超简单!一学就懂的互联网金融

视觉图文 / 人民邮电出版社 / 2015-2-1 / 45.00元

零基础、全图解,通过130多个精辟的知识点、220多张通俗易懂的逻辑图表,让您一书在手,即可彻底看懂、玩转互联网金融从菜鸟成为达人,从新手成为互联网金融高手! 本书主要特色:最简洁的版式+最直观的图解+最实用的内容。 本书细节特色:10章专题内容详解+80多个特别提醒奉献+130多个知识点讲解+220多张图片全程图解,深度剖析互联网金融的精华之处,帮助读者在最短的时间内掌握互联网金融知......一起来看看 《超简单!一学就懂的互联网金融》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

MD5 加密
MD5 加密

MD5 加密工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具