3 skills to master before reinforcement learning (RL)

栏目: IT技术 · 发布时间: 4年前

内容简介:Modern reinforcement learning is almost entirely focused onAlmost all of the courses and tutorials will assume you

1. Supervised learning

Modern reinforcement learning is almost entirely focused on deep reinforcement learning . The word in the “ deep ” in the phrase deep reinforcement learning implies the use of a neural network in a core aspect of the algorithm. The neural network does some high-dimensional approximation in the learning process. That being said, the model does not need to have many layers and features, which is a common misconception that deep implies many layers.

Almost all of the courses and tutorials will assume you can fine-tune simple neural networks to approximate state values or create a final policy . These models are historically highly sensitive to all of the following training parameters: learning rate, batch size, model parameters, data normalization, and more. Doubled with tasks that are difficult to solve, debugging RL can be very difficult, and just seem like a binary it works or it doesn’t . Eliminating tails of confusing by knowing that all the sub approximations made are up to par. The best way to do this would be to learn supervised learning, then let an AutoML tool finish the job for you.


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

领域驱动设计

领域驱动设计

[美] Eric Evans / 赵俐、盛海艳、刘霞 / 人民邮电出版社 / 2016-6-1 / 69

本书是领域驱动设计方面的经典之作,修订版更是对之前出版的中文版进行了全面的修订和完善。 全书围绕着设计和开发实践,结合若干真实的项目案例,向读者阐述如何在真实的软件开发中应用领域驱动设计。书中给出了领域驱动设计的系统化方法,并将人们普遍接受的一些实践综合到一起,融入了作者的见解和经验,展现了一些可扩展的设计新实践、已验证过的技术以及便于应对复杂领域的软件项目开发的基本原则。一起来看看 《领域驱动设计》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

SHA 加密
SHA 加密

SHA 加密工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具