Equational reasoning in Racket

栏目: IT技术 · 发布时间: 4年前

内容简介:This post is an excerpt that will be included in my final Master’s thesis, but I decided it is interesting enough to post it on its own.We will define a few ofWe start with some basic Peano definitions:

This post is an excerpt that will be included in my final Master’s thesis, but I decided it is interesting enough to post it on its own.

We will define a few of Peano’s axioms together with a procedure for substitution in equations so that we can prove some theorems using this system.

We start with some basic Peano definitions:

(define zero 'z)
(define (succ x) (list 's x))
(define (add-1 a) (list '= (list '+ a zero) a))
(define (add-2 a b) (list '= (list '+ a (succ b)) (succ (list '+ a b))))

Namely:

  1. zero is a constant with the symbol z
  2. succ is a procedure that takes a single argument x and returns a list where x is prepended with the symbol s . This is the successor, e.g. (succ zero) evaluates to '(s z)
  3. add-1 is a procedure that takes a parameter a and returns an equation '(= (+ a zero) a . This is basically Equational reasoning in Racket
  4. add-2 is a procedure that takes two parameters a and b and returns an equation '(= (+ a (succ b)) (succ (+ a b))) . This is Equational reasoning in Racket

We proceed by defining procedures to work upon equations:

(define (eq-refl a) (list '= a a))
(define (eq-left a) (cadr a))
(define (eq-right a) (caddr a))

In this case, we defined eq-refl to construct equations of the form , together with procedures for taking the left and the right side of an equation.

Next, we define the (very simple! (no support for free/bound vars)) algorithm for equational substitution.

(define (subst x y expr)
  (cond ((null? expr) '())
        ((equal? x expr) y)
        ((not (pair? expr)) expr)
        (else (cons (subst x y (car expr))
                    (subst x y (cdr expr))))))

A couple of more helper procedures:

(define (rewrite-left eq1 eq2)
  (subst (eq-left eq1)
         (eq-right eq1)
         eq2))

(define (rewrite-right eq1 eq2)
  (subst (eq-right eq1)
         (eq-left eq1)
         eq2))

Finally, a theorem is valid if both sides of an equation are equal.

(define (valid-theorem? theorem)
  (and (equal? theorem (eq-refl (eq-left theorem)))
       (equal? theorem (eq-refl (eq-right theorem)))))

An example proof:

(define (prove-theorem)
  ; a + S(0) = S(a)
  (define theorem '(= (+ a (s z)) (s a)))
  ; S(a + 0) = S(a)
  (define step1 (rewrite-left (add-2 'a zero) theorem))
  ; S(a) = S(a)
  (define step2 (rewrite-left (add-1 'a) step1))
  step2)

This proof defines steps where in each step we transform the given theorem (what we want to prove) by using an inference rule. Finally, the last transformation step2 will be returned. In this case, (valid-theorem? (prove-theorem)) will return true.

The same proof in Coq, except that instead of using our own subst we use Coq’s machinery:

Axiom add_1 : forall (a : nat), (a = a + 0).
Axiom add_2 : forall (a b : nat), (a + S b = S (a + b)).
Axiom eq_refl : forall (a : nat), a = a.

Theorem theorem (a b : nat) : a + S(0) = S(a).
Proof.
  intros.
  rewrite (add_2 a 0).
  rewrite <- (add_1 a).
  apply eq_refl.
Qed.

We showed a minimal system for constructing proofs in a Lisp, in which equations can be manipulated. In practice, Coq is much more convenient for more complex proofs, but this was nevertheless an interesting exercise.


以上所述就是小编给大家介绍的《Equational reasoning in Racket》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

深入分析Java Web技术内幕(修订版)

深入分析Java Web技术内幕(修订版)

许令波 / 电子工业出版社 / 2014-8-1 / CNY 79.00

《深入分析Java Web技术内幕(修订版)》新增了淘宝在无线端的应用实践,包括:CDN 动态加速、多终端化改造、 多终端Session 统一 ,以及在大流量的情况下,如何跨越性能、网络和一个地区的电力瓶颈等内容,并提供了比较完整的解决方案。 《深入分析Java Web技术内幕(修订版)》主要围绕Java Web 相关技术从三方面全面、深入地进行了阐述。首先介绍前端知识,即在JavaWeb ......一起来看看 《深入分析Java Web技术内幕(修订版)》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具