内容简介:... while reading the "Beautiful Code" book, the 5th chapter ("... Lessons from Designing XML Verifiers") by Elliotte Rusty Harold, I've found this piece of code (it's like isdigit() for Unicode):... which was then optimized by the author:You see, the prob
... while reading the "Beautiful Code" book, the 5th chapter ("... Lessons from Designing XML Verifiers") by Elliotte Rusty Harold, I've found this piece of code (it's like isdigit() for Unicode):
bool isXMLDigit(unsigned int c) { if (c >= 0x0030 && c <= 0x0039) return true; // ASCII if (c >= 0x0660 && c <= 0x0669) return true; // arabic if (c >= 0x06F0 && c <= 0x06F9) return true; // arabic if (c >= 0x0966 && c <= 0x096F) return true; // Devanagari if (c >= 0x09E6 && c <= 0x09EF) return true; if (c >= 0x0A66 && c <= 0x0A6F) return true; // Gurmukhi? if (c >= 0x0AE6 && c <= 0x0AEF) return true; if (c >= 0x0B66 && c <= 0x0B6F) return true; if (c >= 0x0BE7 && c <= 0x0BEF) return true; if (c >= 0x0C66 && c <= 0x0C6F) return true; if (c >= 0x0CE6 && c <= 0x0CEF) return true; if (c >= 0x0D66 && c <= 0x0D6F) return true; if (c >= 0x0E50 && c <= 0x0E59) return true; if (c >= 0x0ED0 && c <= 0x0ED9) return true; if (c >= 0x0F20 && c <= 0x0F29) return true; // Tibetan? return false; }
... which was then optimized by the author:
bool isXMLDigit_optimized(unsigned int c) { if (c < 0x0030) return false; if (c <= 0x0039) return true; if (c < 0x0660) return false; if (c <= 0x0669) return true; if (c < 0x06F0) return false; if (c <= 0x06F9) return true; if (c < 0x0966) return false; if (c <= 0x096F) return true; if (c < 0x09E6) return false; if (c <= 0x09EF) return true; if (c < 0x0A66) return false; if (c <= 0x0A6F) return true; if (c < 0x0AE6) return false; if (c <= 0x0AEF) return true; if (c < 0x0B66) return false; if (c <= 0x0B6F) return true; if (c < 0x0BE7) return false; if (c <= 0x0BEF) return true; if (c < 0x0C66) return false; if (c <= 0x0C6F) return true; if (c < 0x0CE6) return false; if (c <= 0x0CEF) return true; if (c < 0x0D66) return false; if (c <= 0x0D6F) return true; if (c < 0x0E50) return false; if (c <= 0x0E59) return true; if (c < 0x0ED0) return false; if (c <= 0x0ED9) return true; if (c < 0x0F20) return false; if (c <= 0x0F29) return true; return false; }
You see, the problem with such hackish solution is that they are prone to bugs. A small unnoticed (for a long period of time) typo can ruin everything.
CBMC
Can we prove these two functions are equivalent to each other? I used KLEE in past for that , but it is not the only kid on a block. Another well-known tool is CBMC . (Stands for "C Bounded Model Checker", I think.) It also uses SMT solver as a backend engine.
I am adding this function:
void check(unsigned int c) { assert (isXMLDigit_optimized(c) == isXMLDigit(c)); };
And asking CBMC to find such an input so that assert() would stop:
$ cbmc --trace --function check isXMLdigit.c ... ** Results: [check.assertion.1] assertion isXMLDigit_optimized(c) == isXMLDigit(c): SUCCESS ** 0 of 1 failed (1 iteration) VERIFICATION SUCCESSFUL
Try to alter any line or constant in any function and ...
** Results: [check.assertion.1] assertion isXMLDigit_optimized(c) == isXMLDigit(c): FAILURE Trace for check.assertion.1: State 17 file isXMLdigit_bug.c line 64 thread 0 ---------------------------------------------------- INPUT c: 2534u (00000000 00000000 00001001 11100110) State 20 file isXMLdigit_bug.c line 64 thread 0 ---------------------------------------------------- c=2534u (00000000 00000000 00001001 11100110) State 24 file isXMLdigit_bug.c line 66 function check thread 0 ---------------------------------------------------- c=2534u (00000000 00000000 00001001 11100110) State 42 file isXMLdigit_bug.c line 66 function check thread 0 ---------------------------------------------------- c=2534u (00000000 00000000 00001001 11100110) Violated property: file isXMLdigit_bug.c line 66 function check assertion isXMLDigit_optimized(c) == isXMLDigit(c) return_value_isXMLDigit_optimized == return_value_isXMLDigit
c=2534 is an input leading to crash.
Z3 SMT-solver
But I also wanted to know if I can convert all this into propositional logic form and check equivalence using SMT solver.
I would add two types of boolean variables. "c"-variables for conditions. "p"-variables are like "points". Each "point" is true if execution flow reaches this point for the corresponding input.
bool isXMLDigit(unsigned int c) { /*p1.1*/ if (/*c1*/ c>=0x0030 && c<=0x0039) /*p1.2*/ return true;/*p1.3*/ /*p2.1*/ if (/*c2*/ c>=0x0660 && c<=0x0669) /*p2.2*/ return true;/*p2.3*/ ... /*p15.1*/if (/*c15*/c>=0x0F20 && c<=0x0F29) /*p15.2*/return true;/*p15.3*/ /*p16*/ return false; }
p1.1 is always true (we get there for any input). p1.2 is true if p1.1 is true AND c1 condition is true. p1.3 is true if p1.1 is true AND p1.2 is false (as if no "return true" has been executed). On the next line, p2.1 is a synonym for p1.3.
The function returns false IFF (if and only if) p16==true. The function returns true IFF (p1.2 OR p2.2 OR ... OR p15.2).
Here is how I model this using SMT-LIB 2.0 LISPy language:
; /*p1.1*/ if (/*c1*/ c>=0x0030 && c<=0x0039) /*p1.2*/ return true;/*p1.3*/ (assert (= f1_p1_1 true)) ; always (assert (= f1_c1 (and (bvuge f1_c #x0030) (bvule f1_c #x0039)))) (assert (= f1_p1_2 (and f1_p1_1 f1_c1))) (assert (= f1_p1_3 (and f1_p1_1 (not f1_p1_2)))) ; /*p2.1*/ if (/*c2*/ c>=0x0660 && c<=0x0669) /*p2.2*/ return true;/*p2.3*/ (assert (= f1_p2_1 f1_p1_3)) (assert (= f1_c2 (and (bvuge f1_c #x0660) (bvule f1_c #x0669)))) (assert (= f1_p2_2 (and f1_p2_1 f1_c2))) (assert (= f1_p2_3 (and f1_p2_1 (not f1_p2_2)))) ... ; f1() returns false IFF f1_p16 (assert (= f1_returns_false f1_p16)) ; f1() return true IFF f1_p1_2 OR f1_p2_2 OR ... OR f1_p15_2 (assert (= f1_returns_true (or f1_p1_2 f1_p2_2 f1_p3_2 f1_p4_2 f1_p5_2 f1_p6_2 f1_p7_2 f1_p8_2 f1_p9_2 f1_p10_2 f1_p11_2 f1_p12_2 f1_p13_2 f1_p14_2 f1_p15_2)))
Yes, Z3Py could be used, but I chose not to "contaminate" it by Python syntax yet, to get a clearer representation of propositional logic equation.
Optimized version of the function is a bit more complex:
bool isXMLDigit_optimized(unsigned int c) { /*p1.1*/ if (/*c1.1*/ c<0x0030) /*p1.2*/ return false; /*p1.3*/ if (/*c1.2*/ c<=0x0039) /*p1.4*/ return true;/*p1.5*/ /*p2.1*/ if (/*c2.1*/ c<0x0660) /*p2.2*/ return false; /*p2.3*/ if (/*c2.2*/ c<=0x0669) /*p2.4*/ return true;/*p2.5*/ ... /*p15.1*/if (/*c15.1*/c<0x0F20) /*p15.2*/return false; /*p15.3*/if (/*c15.2*/c<=0x0F29) /*p15.4*/return true;/*p15.5*/ /*p16*/ return false; }
How I model it in SMT:
; /*p1.1*/ if (/*c1.1*/ c<0x0030) /*p1.2*/ return false; /*p1.3*/ if (/*c1.2*/ c<=0x0039) /*p1.4*/ return true;/*p1.5*/ (assert (= f2_p1_1 true)) ; always (assert (= f2_c1_1 (bvult f2_c #x0030))) (assert (= f2_p1_2 (and f2_p1_1 f2_c1_1))) (assert (= f2_p1_3 (and f2_p1_1 (not f2_p1_2)))) (assert (= f2_c1_2 (bvule f2_c #x0039))) (assert (= f2_p1_4 (and f2_p1_3 f2_c1_2))) (assert (= f2_p1_5 (and f2_p1_1 (not f2_p1_4)))) ; /*p2.1*/ if (/*c2.1*/ c<0x0660) /*p2.2*/ return false; /*p2.3*/ if (/*c2.2*/ c<=0x0669) /*p2.4*/ return true;/*p2.5*/ (assert (= f2_p2_1 f2_p1_5)) (assert (= f2_c2_1 (bvult f2_c #x0660))) (assert (= f2_p2_2 (and f2_p2_1 f2_c2_1))) (assert (= f2_p2_3 (and f2_p2_1 (not f2_p2_2)))) (assert (= f2_c2_2 (bvule f2_c #x0669))) (assert (= f2_p2_4 (and f2_p2_3 f2_c2_2))) (assert (= f2_p2_5 (and f2_p2_1 (not f2_p2_4))))
And at the very end, I'm asking for such an input for both function, for which their outputs would differ:
(assert (= f1_c f2_c)) (assert (or (not (= f1_returns_false f2_returns_false)) (not (= f1_returns_true f2_returns_true))))
No, Z3, CVC4 and Boolector can't find such an input, giving "unsat". The problem is small enough to be tackled by my toy-level MK85 bitblaster . Alter any constant, and SMT solver would find such an input.
Perhaps, this is what CBMC doing internally, if I understand all the things correctly.
Thanks
Thanks to Martin Nyx Brain for help with CBMC.
The files
But bruteforce?
You see, you can enumerate all 16-bit inputs effortlessly. Yes, but this is a simple example itself.
More to come...
以上所述就是小编给大家介绍的《[SMT][Z3] Proving equivalence of two functions using CBMC and Z3 SMT-solver》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
数据结构与算法分析(Java版)(英文原版)
(美)Clifford A.Shaffer / 电子工业出版社 / 2002-5 / 39.00元
《数据结构与算法分析(C++版)(第2版)》采用程序员最爱用的面向对象C++语言来描述数据结构和算法,并把数据结构原理和算法分析技术有机地结合在一起,系统介绍了各种类型的数据结构和排序、检索的各种方法。作者非常注意对每一种数据结构的不同存储方法及有关算法进行分析比较。书中还引入了一些比较高级的数据结构与先进的算法分析技术,并介绍了可计算性理论的一般知识。本版的重要改进在于引入了参数化的模板,从而提......一起来看看 《数据结构与算法分析(Java版)(英文原版)》 这本书的介绍吧!