KarateClub a Python library for unsupervised machine learning on graphs

栏目: IT技术 · 发布时间: 5年前

内容简介:Karate Clubis an unsupervised machine learning extension library forPlease look at the

KarateClub a Python library for unsupervised machine learning on graphs

Karate Clubis an unsupervised machine learning extension library for NetworkX .

Please look at the Documentation and the relevant Paper .

Karate Club consists of state-of-the-art methods to do unsupervised learning on graph structured data. To put it simply it is a Swiss Army knife for small-scale graph mining research. First, it provides network embedding techniques at the node and graph level. Second, it includes a variety of overlapping and non-overlapping community detection methods. Implemented methods cover a wide range of network science ( NetSci , Complenet ), data mining ( ICDM , CIKM , KDD ), artificial intelligence ( AAAI , IJCAI ) and machine learning ( NeurIPS , ICML , ICLR ) conferences, workshops, and pieces from prominent journals.

Citing

If you find Karate Club useful in your research, please consider citing the following paper:

>@misc{karateclub2020,
       title={An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs},
       author={Benedek Rozemberczki and Oliver Kiss and Rik Sarkar},
       year={2020},
       eprint={2003.04819},
       archivePrefix={arXiv},
       primaryClass={cs.LG}
}

A simple example

Karate Club makes the use of modern community detection techniques quite easy (see here for the accompanying tutorial). For example, this is all it takes to use on a Watts-Strogatz graph Ego-splitting :

import networkx as nx
from karateclub import EgoNetSplitter

g = nx.newman_watts_strogatz_graph(1000, 20, 0.05)

splitter = EgoNetSplitter(1.0)

splitter.fit(g)

print(splitter.get_memberships())

Models included

In detail, the following community detection and embedding methods were implemented.

Overlapping Community Detection

Non-Overlapping Community Detection

Neighbourhood-Based Node Level Embedding

Structural Node Level Embedding

Attributed Node Level Embedding

Meta Node Embedding

Graph Level Embedding

Head over to our documentation to find out more about installation and data handling, a full list of implemented methods, and datasets. For a quick start, check out our examples .

If you notice anything unexpected, please open an issue and let us know. If you are missing a specific method, feel free to open a feature request . We are motivated to constantly make Karate Club even better.

Installation

Karate Club can be installed with the following pip command.

$ pip install karateclub

As we create new releases frequently, upgrading the package casually might be beneficial.

$ pip install karateclub --upgrade

Running examples

As part of the documentation we provide a number of use cases to show how the clusterings and embeddings can be utilized for downstream learning. These can accessed here with detailed explanations.

Besides the case studies we provide synthetic examples for each model. These can be tried out by running the examples script.

$ python examples.py

以上所述就是小编给大家介绍的《KarateClub a Python library for unsupervised machine learning on graphs》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

水平营销

水平营销

[美] 菲利普·科特勒、费尔南多・德・巴斯 / 陈燕茹 / 中信出版社 / 2005-1 / 25.00元

《水平营销》阐明了相对纵向营销而言的的水平营销的框架和理论。引入横向思维来作为发现新的营销创意的又一平台,旨在获得消费者不可能向营销研究人员要求或建议的点子。而这些点子将帮助企业在产品愈加同质和超竞争的市场中立于不败之地。 《水平营销》提到: 是什么创新过程导致加油站里开起了超市? 是什么创新过程导致取代外卖比萨服务的冷冻比萨的亮相? 是什么创新过程导致巧克力糖里冒出了玩具......一起来看看 《水平营销》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器