minio/sidekick

栏目: IT技术 · 发布时间: 4年前

minio/sidekick

sidekick is a high-performance sidecar load-balancer. By attaching a tiny load balancer as a sidecar to each of the client application processes, you can eliminate the centralized loadbalancer bottleneck and DNS failover management. sidekick automatically avoids sending traffic to the failed servers by checking their health via the readiness API and HTTP error returns.

Table of Contents

Download

Download Binary Releases for various platforms.

Usage

USAGE:
  sidekick [FLAGS] ENDPOINTs...
  sidekick [FLAGS] ENDPOINT{1...N}

FLAGS:
  --address value, -a value          listening address for sidekick (default: ":8080")
  --health-path value, -p value      health check path
  --health-duration value, -d value  health check duration in seconds (default: 5)
  --insecure, -i                     disable TLS certificate verification
  --log , -l                         enable logging
  --trace, -t                        enable HTTP tracing
  --quiet                            disable console messages
  --json                             output sidekick logs and trace in json format
  --debug                            output verbose trace
  --help, -h                         show help
  --version, -v                      print the version

Examples

  • Load balance across a web service using DNS provided IPs.
$ sidekick --health-path=/ready http://myapp.myorg.dom
$ sidekick --health-path=/minio/health/ready --address :8000 http://minio{1...4}:9000
$ sidekick --health-path=/minio/health/ready http://minio{1...16}:9000

Realworld Example with spark-orchestrator

As spark driver , executor sidecars, to begin with install spark-operator and MinIO on your kubernetes cluster

optionalcreate a kubernetes namespace spark-operator

kubectl create ns spark-operator

Configure spark-orchestrator

We shall be using maintained spark operator by GCP at https://github.com/GoogleCloudPlatform/spark-on-k8s-operator

helm repo add incubator http://storage.googleapis.com/kubernetes-charts-incubator
helm install spark-operator incubator/sparkoperator --namespace spark-operator  --set sparkJobNamespace=spark-operator --set enableWebhook=true

Install MinIO

helm install minio-distributed stable/minio --namespace spark-operator --set accessKey=minio,secretKey=minio123,persistence.enabled=false,mode=distributed

NOTE: persistence is disabled here for testing, make sure you are using persistence with PVs for production workload. For more details read our helm documentation

Once minio-distributed is up and running configure mc and upload some data, we shall choose mybucket as our bucketname.

Port-forward to access minio-cluster locally.

kubectl port-forward pod/minio-distributed-0 9000

Create bucket named mybucket and upload some text data for spark word count sample.

mc config host add minio-distributed http://localhost:9000 minio minio123
mc mb minio-distributed/mybucket
mc cp /etc/hosts minio-distributed/mybucket/mydata/{1..4}.txt

Run the spark job

apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication
metadata:
  name: spark-minio-app
  namespace: spark-operator
spec:
  sparkConf:
    spark.kubernetes.allocation.batch.size: "50"
  hadoopConf:
    "fs.s3a.endpoint": "http://127.0.0.1:9000"
    "fs.s3a.access.key": "minio"
    "fs.s3a.secret.key": "minio123"
    "fs.s3a.path.style.access": "true"
    "fs.s3a.impl": "org.apache.hadoop.fs.s3a.S3AFileSystem"
  type: Scala
  sparkVersion: 2.4.5
  mode: cluster
  image: minio/spark:v2.4.5-hadoop-3.1
  imagePullPolicy: Always
  restartPolicy:
      type: OnFailure
      onFailureRetries: 3
      onFailureRetryInterval: 10
      onSubmissionFailureRetries: 5
      onSubmissionFailureRetryInterval: 20

  mainClass: org.apache.spark.examples.JavaWordCount
  mainApplicationFile: "local:///opt/spark/examples/target/original-spark-examples_2.11-2.4.6-SNAPSHOT.jar"
  arguments:
  - "s3a://mytestbucket/mydata"
  driver:
    cores: 1
    coreLimit: "1000m"
    memory: "512m"
    labels:
      version: 2.4.5
    sidecars:
    - name: minio-lb
      image: "minio/sidekick:v0.1.4"
      imagePullPolicy: Always
      args: ["--health-path", "/minio/health/ready", "--address", ":9000", "http://minio-distributed-{0...3}.minio-distributed-svc.spark-operator.svc.cluster.local:9000"]
      ports:
        - containerPort: 9000

  executor:
    cores: 1
    instances: 4
    memory: "512m"
    labels:
      version: 2.4.5
    sidecars:
    - name: minio-lb
      image: "minio/sidekick:v0.1.4"
      imagePullPolicy: Always
      args: ["--health-path", "/minio/health/ready", "--address", ":9000", "http://minio-distributed-{0...3}.minio-distributed-svc.spark-operator.svc.cluster.local:9000"]
      ports:
        - containerPort: 9000
kubectl create -f spark-job.yaml
kubectl logs -f --namespace spark-operator spark-minio-app-driver spark-kubernetes-driver

Roadmap

  • S3 Cache : Use an S3 compatible object storage for shared cache storage

以上所述就是小编给大家介绍的《minio/sidekick》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

信息论、推理与学习算法

信息论、推理与学习算法

麦凯 / 高等教育出版社 / 2006-7 / 59.00元

本书是英国剑桥大学卡文迪许实验室的著名学者David J.C.MacKay博士总结多年教学经验和科研成果,于2003年推出的一部力作。本书作者不仅透彻地论述了传统信息论的内容和最新编码算法,而且以高度的学科驾驭能力,匠心独具地在一个统一框架下讨论了贝叶斯数据建模、蒙特卡罗方法、聚类算法、神经网络等属于机器学习和推理领域的主题,从而很好地将诸多学科的技术内涵融会贯通。本书注重理论与实际的结合,内容组......一起来看看 《信息论、推理与学习算法》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器