Analyzing rideshare data

栏目: IT技术 · 发布时间: 4年前

内容简介:Over the past decade, ride-hailing services such as Uber, Lyft, Gett, Juno, and Via have revolutionized the transportation space. However, profitability for drivers varies across all these platforms in complicated ways. Drivers are forced to make mental ca

The process of building the quantitative backbone for an app

Feb 9 ·6min read

Analyzing rideshare data

Original app description

Over the past decade, ride-hailing services such as Uber, Lyft, Gett, Juno, and Via have revolutionized the transportation space. However, profitability for drivers varies across all these platforms in complicated ways. Drivers are forced to make mental calculations based on the time of day, surge rate, wait time to pick up a rider, etc. for each driving service, and choose to ride for a given service at any point based on the optimization of such factors. As a result of this difficult optimization problem — given the number of potential factors as well as the many unknowns — the driver has no certainty that they have chosen the most profitable service with which to ride. Ride King eliminates such uncertainty by pooling historical and to-date data for each driving service based on the driver’s location as well as the time at which the driver is looking to drive. The ultimate goal with Ride King is to eventually extend this optimization service to riders, such that they may be able to select the cheapest rideshare company with which to ride at any given point. The convergence of the respective optimizations for riders and drivers will hopefully detract enough from each rideshare service to engender a better sense of transparency and/or greater payouts for drivers.

Ride King: Ride Intelligently

A look at the raw data

The data collection for this app idea was by no means straightforward. To avoid having their information used for competitive purposes, most rideshare companies will do everything in their power to protect their data. However, with some deliberation, we can actually discover a couple backdoor methods to access these data. All rideshare apps in NYC are under the Taxi and Limousine Commission (TLC) and are required by law to submit data on every ride that occurs. With some investigation, the keen observer will find that TLC is part of the NYC Open Data initiative, which was established to increase transparency in state and city affairs. While the data these rideshare companies do provide are incredibly shallow (minimal information per ride), we can still pull quite a bit of information from them. To start us off, however, I‘m using Uber data from April 2014 (provided generously by the company, fivethirtyeight ) that have a slightly different format to the TLC dataset.

Analyzing rideshare data

Example rows from fivethirtyeight Uber NYC April 2014 dataset

From a quick glance, we can see that each row in this set provides the date, time, location of pickup (in geographic coordinates), and ‘base’. We will get to the last column a bit later—for now, let’s just look at the raw data. Please note that, while we could just plot the raw geographic coordinates, I’ve actually overlaid NYC neighborhood boundary data that was generously made public by Zillow. This now has added another dimension to our data!

Analyzing rideshare data

All Uber pickups from April 2014 in mid/lower Manhattan

Okay, cool. So we can now see all the Uber pickups from April 2014 in Manhattan (zoomed, for readability) with neighborhood boundaries and all! Since the goal of this project is to try and predict the profitability of a rideshare service based on the time of day and location, we’ve only scratched the surface so far, but we can already see that rides are definitely not distributed evenly!


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

黑客大曝光

黑客大曝光

Joel Scambray、Vincent Liu、Caleb Sima / 姚军 / 机械工业出版社华章公司 / 2011-10 / 65.00元

在网络技术和电子商务飞速发展的今天,Web应用安全面临着前所未有的挑战。所有安全技术人员有必要掌握当今黑客们的武器和思维过程,保护Web应用免遭恶意攻击。本书由美国公认的安全专家和精神领袖打造,对上一版做了完全的更新,覆盖新的网络渗透方法和对策,介绍如何增强验证和授权、弥补Firefox和IE中的漏洞、加强对注入攻击的防御以及加固Web 2.0安全,还介绍了如何将安全技术整合在Web开发以及更广泛......一起来看看 《黑客大曝光》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

html转js在线工具
html转js在线工具

html转js在线工具