“瘦身成功”的ALBERT,能取代BERT吗?

栏目: IT技术 · 发布时间: 4年前

内容简介:十三 发自 凹非寺量子位 报道 | 公众号 QbitAI参数比BERT少了80%,性能却提高了。

十三 发自 凹非寺

量子位 报道 | 公众号 QbitAI

参数比BERT少了80%,性能却提高了。

这就是谷歌去年提出的“瘦身成功版BERT”模型—— ALBERT

这个模型一经发布,就受到了高度关注,二者的对比也成为了热门话题。

而最近,网友Naman Bansal就提出了一个疑问:

是否应该用ALBERT来代替BERT?

“瘦身成功”的ALBERT,能取代BERT吗?

能否替代,比比便知。

BERT与ALBERT

BERT模型是大家比较所熟知的。

2018年由谷歌提出,训练的语料库规模非常庞大,包含33亿个词语。

“瘦身成功”的ALBERT,能取代BERT吗?

模型的创新点集中在了预训练过程,采用Masked LM和Next Sentence Prediction两种方法,分别捕捉词语和句子级别的表示。

BERT的出现,彻底改变了预训练产生词向量和下游具体NLP任务的关系。

时隔1年后,谷歌又提出 ALBERT ,也被称作“lite-BERT”,骨干网络和BERT相似,采用的依旧是 Transformer 编码器,激活函数也是GELU。

其最大的成功,就在于参数量比BERT少了80%,同时还取得了更好的结果。

与BERT相比的改进,主要包括嵌入向量参数化的因式分解、跨层参数共享、句间连贯性损失采用SOP,以及移除了dropout。

下图便是BERT和ALBERT,在SQuAD和RACE数据集上的性能测试比较结果。

“瘦身成功”的ALBERT,能取代BERT吗?

可以看出,ALBERT性能取得了较好的结果。

如何实现自定义语料库(预训练)ALBERT?

为了进一步了解ALBERT,接下来,将在自定义语料库中实现ALBERT。

所采用的数据集是“用餐点评数据集”,目标就是 通过ALBERT模型来识别菜肴的名称

第一步:下载数据集并准备文件

1#Downlading all files and data
 2
 3!wget https://github.com/LydiaXiaohongLi/Albert_Finetune_with_Pretrain_on_Custom_Corpus/raw/master/data_toy/dish_name_train.csv
 4!wget https://github.com/LydiaXiaohongLi/Albert_Finetune_with_Pretrain_on_Custom_Corpus/raw/master/data_toy/dish_name_val.csv
 5!wget https://github.com/LydiaXiaohongLi/Albert_Finetune_with_Pretrain_on_Custom_Corpus/raw/master/data_toy/restaurant_review.txt
 6!wget https://github.com/LydiaXiaohongLi/Albert_Finetune_with_Pretrain_on_Custom_Corpus/raw/master/data_toy/restaurant_review_nopunct.txt
 7!wget https://github.com/LydiaXiaohongLi/Albert_Finetune_with_Pretrain_on_Custom_Corpus/raw/master/models_toy/albert_config.json
 8!wget https://github.com/LydiaXiaohongLi/Albert_Finetune_with_Pretrain_on_Custom_Corpus/raw/master/model_checkpoint/finetune_checkpoint
 9!wget https://github.com/LydiaXiaohongLi/Albert_Finetune_with_Pretrain_on_Custom_Corpus/raw/master/model_checkpoint/pretrain_checkpoint
10
11#Creating files and setting up ALBERT
12
13!pip install sentencepiece
14!git clone https://github.com/google-research/ALBERT
15!python ./ALBERT/create_pretraining_data.py --input_file "restaurant_review.txt" --output_file "restaurant_review_train" --vocab_file "vocab.txt" --max_seq_length=64
16!pip install transformers
17!pip install tfrecord

第二步:使用transformer并定义层

1#Defining Layers for ALBERT
 2
 3from transformers.modeling_albert import AlbertModel, AlbertPreTrainedModel
 4from transformers.configuration_albert import AlbertConfig
 5import torch.nn as nn
 6class AlbertSequenceOrderHead(nn.Module):
 7    def __init__(self, config):
 8        super().__init__()
 9        self.dense = nn.Linear(config.hidden_size, 2)
10        self.bias = nn.Parameter(torch.zeros(2))
11
12    def forward(self, hidden_states):
13        hidden_states = self.dense(hidden_states)
14        prediction_scores = hidden_states + self.bias
15
16        return prediction_scores
17
18from torch.nn import CrossEntropyLoss
19from transformers.modeling_bert import ACT2FN
20class AlbertForPretrain(AlbertPreTrainedModel):
21
22    def __init__(self, config):
23        super().__init__(config)
24
25        self.albert = AlbertModel(config)       
26
27        # For Masked LM
28        # The original huggingface implementation, created new output weights via dense layer
29        # However the original Albert 
30        self.predictions_dense = nn.Linear(config.hidden_size, config.embedding_size)
31        self.predictions_activation = ACT2FN[config.hidden_act]
32        self.predictions_LayerNorm = nn.LayerNorm(config.embedding_size)
33        self.predictions_bias = nn.Parameter(torch.zeros(config.vocab_size)) 
34        self.predictions_decoder = nn.Linear(config.embedding_size, config.vocab_size)
35
36        self.predictions_decoder.weight = self.albert.embeddings.word_embeddings.weight
37
38        # For sequence order prediction
39        self.seq_relationship = AlbertSequenceOrderHead(config)
40
41
42    def forward(
43        self,
44        input_ids=None,
45        attention_mask=None,
46        token_type_ids=None,
47        position_ids=None,
48        head_mask=None,
49        inputs_embeds=None,
50        masked_lm_labels=None,
51        seq_relationship_labels=None,
52    ):
53
54        outputs = self.albert(
55            input_ids,
56            attention_mask=attention_mask,
57            token_type_ids=token_type_ids,
58            position_ids=position_ids,
59            head_mask=head_mask,
60            inputs_embeds=inputs_embeds,
61        )
62
63        loss_fct = CrossEntropyLoss()
64
65        sequence_output = outputs[0]
66
67        sequence_output = self.predictions_dense(sequence_output)
68        sequence_output = self.predictions_activation(sequence_output)
69        sequence_output = self.predictions_LayerNorm(sequence_output)
70        prediction_scores = self.predictions_decoder(sequence_output)
71
72
73        if masked_lm_labels is not None:
74            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size)
75                                      , masked_lm_labels.view(-1))
76
77        pooled_output = outputs[1]
78        seq_relationship_scores = self.seq_relationship(pooled_output)
79        if seq_relationship_labels is not None:  
80            seq_relationship_loss = loss_fct(seq_relationship_scores.view(-1, 2), seq_relationship_labels.view(-1))
81
82        loss = masked_lm_loss + seq_relationship_loss
83
84        return loss

第三步:使用LAMB优化器并微调ALBERT

1#Using LAMB optimizer
  2#LAMB -  "https://github.com/cybertronai/pytorch-lamb"
  3
  4import torch
  5from torch.optim import Optimizer
  6class Lamb(Optimizer):
  7    r"""Implements Lamb algorithm.
  8    It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_.
  9    Arguments:
 10        params (iterable): iterable of parameters to optimize or dicts defining
 11            parameter groups
 12        lr (float, optional): learning rate (default: 1e-3)
 13        betas (Tuple[float, float], optional): coefficients used for computing
 14            running averages of gradient and its square (default: (0.9, 0.999))
 15        eps (float, optional): term added to the denominator to improve
 16            numerical stability (default: 1e-8)
 17        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
 18        adam (bool, optional): always use trust ratio = 1, which turns this into
 19            Adam. Useful for comparison purposes.
 20    .. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes:
 21        https://arxiv.org/abs/1904.00962
 22    """
 23
 24    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6,
 25                 weight_decay=0, adam=False):
 26        if not 0.0 <= lr:
 27            raise ValueError("Invalid learning rate: {}".format(lr))
 28        if not 0.0 <= eps:
 29            raise ValueError("Invalid epsilon value: {}".format(eps))
 30        if not 0.0 <= betas[0] < 1.0:
 31            raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
 32        if not 0.0 <= betas[1] < 1.0:
 33            raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
 34        defaults = dict(lr=lr, betas=betas, eps=eps,
 35                        weight_decay=weight_decay)
 36        self.adam = adam
 37        super(Lamb, self).__init__(params, defaults)
 38
 39    def step(self, closure=None):
 40        """Performs a single optimization step.
 41        Arguments:
 42            closure (callable, optional): A closure that reevaluates the model
 43                and returns the loss.
 44        """
 45        loss = None
 46        if closure is not None:
 47            loss = closure()
 48
 49        for group in self.param_groups:
 50            for p in group['params']:
 51                if p.grad is None:
 52                    continue
 53                grad = p.grad.data
 54                if grad.is_sparse:
 55                    raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instad.')
 56
 57                state = self.state[p]
 58
 59                # State initialization
 60                if len(state) == 0:
 61                    state['step'] = 0
 62                    # Exponential moving average of gradient values
 63                    state['exp_avg'] = torch.zeros_like(p.data)
 64                    # Exponential moving average of squared gradient values
 65                    state['exp_avg_sq'] = torch.zeros_like(p.data)
 66
 67                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
 68                beta1, beta2 = group['betas']
 69
 70                state['step'] += 1
 71
 72                # Decay the first and second moment running average coefficient
 73                # m_t
 74                exp_avg.mul_(beta1).add_(1 - beta1, grad)
 75                # v_t
 76                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
 77
 78                # Paper v3 does not use debiasing.
 79                # bias_correction1 = 1 - beta1 ** state['step']
 80                # bias_correction2 = 1 - beta2 ** state['step']
 81                # Apply bias to lr to avoid broadcast.
 82                step_size = group['lr'] # * math.sqrt(bias_correction2) / bias_correction1
 83
 84                weight_norm = p.data.pow(2).sum().sqrt().clamp(0, 10)
 85
 86                adam_step = exp_avg / exp_avg_sq.sqrt().add(group['eps'])
 87                if group['weight_decay'] != 0:
 88                    adam_step.add_(group['weight_decay'], p.data)
 89
 90                adam_norm = adam_step.pow(2).sum().sqrt()
 91                if weight_norm == 0 or adam_norm == 0:
 92                    trust_ratio = 1
 93                else:
 94                    trust_ratio = weight_norm / adam_norm
 95                state['weight_norm'] = weight_norm
 96                state['adam_norm'] = adam_norm
 97                state['trust_ratio'] = trust_ratio
 98                if self.adam:
 99                    trust_ratio = 1
100
101                p.data.add_(-step_size * trust_ratio, adam_step)
102
103        return loss
104
105 import time
106import torch.nn as nn
107import torch
108from tfrecord.torch.dataset import TFRecordDataset
109import numpy as np
110import os
111
112LEARNING_RATE = 0.001
113EPOCH = 40
114BATCH_SIZE = 2
115MAX_GRAD_NORM = 1.0
116
117print(f"--- Resume/Start training ---")   
118feat_map = {"input_ids": "int", 
119           "input_mask": "int",
120           "segment_ids": "int",
121           "next_sentence_labels": "int",
122           "masked_lm_positions": "int",
123           "masked_lm_ids": "int"}
124pretrain_file = 'restaurant_review_train'
125
126# Create albert pretrain model
127config = AlbertConfig.from_json_file("albert_config.json")
128albert_pretrain = AlbertForPretrain(config)
129# Create optimizer
130optimizer = Lamb([{"params": [p for n, p in list(albert_pretrain.named_parameters())]}], lr=LEARNING_RATE)
131albert_pretrain.train()
132dataset = TFRecordDataset(pretrain_file, index_path = None, description=feat_map)
133loader = torch.utils.data.DataLoader(dataset, batch_size=BATCH_SIZE)
134
135tmp_loss = 0
136start_time = time.time()
137
138if os.path.isfile('pretrain_checkpoint'):
139    print(f"--- Load from checkpoint ---")
140    checkpoint = torch.load("pretrain_checkpoint")
141    albert_pretrain.load_state_dict(checkpoint['model_state_dict'])
142    optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
143    epoch = checkpoint['epoch']
144    loss = checkpoint['loss']
145    losses = checkpoint['losses']
146
147else:
148    epoch = -1
149    losses = []
150for e in range(epoch+1, EPOCH):
151    for batch in loader:
152        b_input_ids = batch['input_ids'].long() 
153        b_token_type_ids = batch['segment_ids'].long() 
154        b_seq_relationship_labels = batch['next_sentence_labels'].long()
155
156        # Convert the dataformat from loaded decoded format into format 
157        # loaded format is created by google's Albert create_pretrain.py script
158        # required by huggingfaces pytorch implementation of albert
159        mask_rows = np.nonzero(batch['masked_lm_positions'].numpy())[0]
160        mask_cols = batch['masked_lm_positions'].numpy()[batch['masked_lm_positions'].numpy()!=0]
161        b_attention_mask = np.zeros((BATCH_SIZE,64),dtype=np.int64)
162        b_attention_mask[mask_rows,mask_cols] = 1
163        b_masked_lm_labels = np.zeros((BATCH_SIZE,64),dtype=np.int64) - 100
164        b_masked_lm_labels[mask_rows,mask_cols] = batch['masked_lm_ids'].numpy()[batch['masked_lm_positions'].numpy()!=0]     
165        b_attention_mask=torch.tensor(b_attention_mask).long()
166        b_masked_lm_labels=torch.tensor(b_masked_lm_labels).long()
167
168
169        loss = albert_pretrain(input_ids = b_input_ids
170                              , attention_mask = b_attention_mask
171                              , token_type_ids = b_token_type_ids
172                              , masked_lm_labels = b_masked_lm_labels 
173                              , seq_relationship_labels = b_seq_relationship_labels)
174
175        # clears old gradients
176        optimizer.zero_grad()
177        # backward pass
178        loss.backward()
179        # gradient clipping
180        torch.nn.utils.clip_grad_norm_(parameters=albert_pretrain.parameters(), max_norm=MAX_GRAD_NORM)
181        # update parameters
182        optimizer.step()
183
184        tmp_loss += loss.detach().item()
185
186    # print metrics and save to checkpoint every epoch
187    print(f"Epoch: {e}")
188    print(f"Train loss: {(tmp_loss/20)}")
189    print(f"Train Time: {(time.time()-start_time)/60} mins")  
190    losses.append(tmp_loss/20)
191
192    tmp_loss = 0
193    start_time = time.time()
194
195    torch.save({'model_state_dict': albert_pretrain.state_dict(),'optimizer_state_dict': optimizer.state_dict(),
196               'epoch': e, 'loss': loss,'losses': losses}
197           , 'pretrain_checkpoint')
198from matplotlib import pyplot as plot
199plot.plot(losses)
200
201#Fine tuning ALBERT
202
203# At the time of writing, Hugging face didnt provide the class object for 
204# AlbertForTokenClassification, hence write your own defination below
205from transformers.modeling_albert import AlbertModel, AlbertPreTrainedModel
206from transformers.configuration_albert import AlbertConfig
207from transformers.tokenization_bert import BertTokenizer
208import torch.nn as nn
209from torch.nn import CrossEntropyLoss
210class AlbertForTokenClassification(AlbertPreTrainedModel):
211
212    def __init__(self, albert, config):
213        super().__init__(config)
214        self.num_labels = config.num_labels
215
216        self.albert = albert
217        self.dropout = nn.Dropout(config.hidden_dropout_prob)
218        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
219
220    def forward(
221        self,
222        input_ids=None,
223        attention_mask=None,
224        token_type_ids=None,
225        position_ids=None,
226        head_mask=None,
227        inputs_embeds=None,
228        labels=None,
229    ):
230
231        outputs = self.albert(
232            input_ids,
233            attention_mask=attention_mask,
234            token_type_ids=token_type_ids,
235            position_ids=position_ids,
236            head_mask=head_mask,
237            inputs_embeds=inputs_embeds,
238        )
239
240        sequence_output = outputs[0]
241
242        sequence_output = self.dropout(sequence_output)
243        logits = self.classifier(sequence_output)
244
245        return logits
246
247import numpy as np
248def label_sent(name_tokens, sent_tokens):
249    label = []
250    i = 0
251    if len(name_tokens)>len(sent_tokens):
252        label = np.zeros(len(sent_tokens))
253    else:
254        while i<len(sent_tokens):
255            found_match = False
256            if name_tokens[0] == sent_tokens[i]:       
257                found_match = True
258                for j in range(len(name_tokens)-1):
259                    if ((i+j+1)>=len(sent_tokens)):
260                        return label
261                    if name_tokens[j+1] != sent_tokens[i+j+1]:
262                        found_match = False
263                if found_match:
264                    label.extend(list(np.ones(len(name_tokens)).astype(int)))
265                    i = i + len(name_tokens)
266                else: 
267                    label.extend([0])
268                    i = i+ 1
269            else:
270                label.extend([0])
271                i=i+1
272    return label
273
274import pandas as pd
275import glob
276import os
277
278tokenizer = BertTokenizer(vocab_file="vocab.txt")
279
280df_data_train = pd.read_csv("dish_name_train.csv")
281df_data_train['name_tokens'] = df_data_train['dish_name'].apply(tokenizer.tokenize)
282df_data_train['review_tokens'] = df_data_train.review.apply(tokenizer.tokenize)
283df_data_train['review_label'] = df_data_train.apply(lambda row: label_sent(row['name_tokens'], row['review_tokens']), axis=1)
284
285df_data_val = pd.read_csv("dish_name_val.csv")
286df_data_val = df_data_val.dropna().reset_index()
287df_data_val['name_tokens'] = df_data_val['dish_name'].apply(tokenizer.tokenize)
288df_data_val['review_tokens'] = df_data_val.review.apply(tokenizer.tokenize)
289df_data_val['review_label'] = df_data_val.apply(lambda row: label_sent(row['name_tokens'], row['review_tokens']), axis=1)
290
291MAX_LEN = 64
292BATCH_SIZE = 1
293from keras.preprocessing.sequence import pad_sequences
294import torch
295from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
296
297tr_inputs = pad_sequences([tokenizer.convert_tokens_to_ids(txt) for txt in df_data_train['review_tokens']],maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
298tr_tags = pad_sequences(df_data_train['review_label'],maxlen=MAX_LEN, padding="post",dtype="long", truncating="post")
299# create the mask to ignore the padded elements in the sequences.
300tr_masks = [[float(i>0) for i in ii] for ii in tr_inputs]
301tr_inputs = torch.tensor(tr_inputs)
302tr_tags = torch.tensor(tr_tags)
303tr_masks = torch.tensor(tr_masks)
304train_data = TensorDataset(tr_inputs, tr_masks, tr_tags)
305train_sampler = RandomSampler(train_data)
306train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=BATCH_SIZE)
307
308
309val_inputs = pad_sequences([tokenizer.convert_tokens_to_ids(txt) for txt in df_data_val['review_tokens']],maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
310val_tags = pad_sequences(df_data_val['review_label'],maxlen=MAX_LEN, padding="post",dtype="long", truncating="post")
311# create the mask to ignore the padded elements in the sequences.
312val_masks = [[float(i>0) for i in ii] for ii in val_inputs]
313val_inputs = torch.tensor(val_inputs)
314val_tags = torch.tensor(val_tags)
315val_masks = torch.tensor(val_masks)
316val_data = TensorDataset(val_inputs, val_masks, val_tags)
317val_sampler = RandomSampler(val_data)
318val_dataloader = DataLoader(val_data, sampler=val_sampler, batch_size=BATCH_SIZE)
319
320model_tokenclassification = AlbertForTokenClassification(albert_pretrain.albert, config)
321from torch.optim import Adam
322LEARNING_RATE = 0.0000003
323FULL_FINETUNING = True
324if FULL_FINETUNING:
325    param_optimizer = list(model_tokenclassification.named_parameters())
326    no_decay = ['bias', 'gamma', 'beta']
327    optimizer_grouped_parameters = [
328        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
329         'weight_decay_rate': 0.01},
330        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
331         'weight_decay_rate': 0.0}
332    ]
333else:
334    param_optimizer = list(model_tokenclassification.classifier.named_parameters()) 
335    optimizer_grouped_parameters = [{"params": [p for n, p in param_optimizer]}]
336optimizer = Adam(optimizer_grouped_parameters, lr=LEARNING_RATE)

第四步:为自定义语料库训练模型

1#Training the model
  2
  3# from torch.utils.tensorboard import SummaryWriter
  4import time
  5import os.path
  6import torch.nn as nn
  7import torch
  8EPOCH = 800
  9MAX_GRAD_NORM = 1.0
 10
 11start_time = time.time()
 12tr_loss, tr_acc, nb_tr_steps = 0, 0, 0
 13eval_loss, eval_acc, nb_eval_steps = 0, 0, 0
 14
 15if os.path.isfile('finetune_checkpoint'):
 16    print(f"--- Load from checkpoint ---")
 17    checkpoint = torch.load("finetune_checkpoint")
 18    model_tokenclassification.load_state_dict(checkpoint['model_state_dict'])
 19    optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
 20    epoch = checkpoint['epoch']
 21    train_losses = checkpoint['train_losses']
 22    train_accs = checkpoint['train_accs']
 23    eval_losses = checkpoint['eval_losses']
 24    eval_accs = checkpoint['eval_accs']
 25
 26else:
 27    epoch = -1
 28    train_losses,train_accs,eval_losses,eval_accs = [],[],[],[]
 29
 30print(f"--- Resume/Start training ---")    
 31for e in range(epoch+1, EPOCH): 
 32
 33    # TRAIN loop
 34    model_tokenclassification.train()
 35
 36    for batch in train_dataloader:
 37        # add batch to gpu
 38        batch = tuple(t for t in batch)
 39        b_input_ids, b_input_mask, b_labels = batch
 40        # forward pass
 41        b_outputs = model_tokenclassification(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)
 42
 43        ce_loss_fct = CrossEntropyLoss()
 44        # Only keep active parts of the loss
 45        b_active_loss = b_input_mask.view(-1) == 1
 46        b_active_logits = b_outputs.view(-1, config.num_labels)[b_active_loss]
 47        b_active_labels = b_labels.view(-1)[b_active_loss]
 48
 49        loss = ce_loss_fct(b_active_logits, b_active_labels)
 50        acc = torch.mean((torch.max(b_active_logits.detach(),1)[1] == b_active_labels.detach()).float())
 51
 52        model_tokenclassification.zero_grad()
 53        # backward pass
 54        loss.backward()
 55        # track train loss
 56        tr_loss += loss.item()
 57        tr_acc += acc
 58        nb_tr_steps += 1
 59        # gradient clipping
 60        torch.nn.utils.clip_grad_norm_(parameters=model_tokenclassification.parameters(), max_norm=MAX_GRAD_NORM)
 61        # update parameters
 62        optimizer.step()
 63
 64
 65    # VALIDATION on validation set
 66    model_tokenclassification.eval()
 67    for batch in val_dataloader:
 68        batch = tuple(t for t in batch)
 69        b_input_ids, b_input_mask, b_labels = batch
 70
 71        with torch.no_grad():
 72
 73            b_outputs = model_tokenclassification(b_input_ids, token_type_ids=None,
 74                         attention_mask=b_input_mask, labels=b_labels)
 75
 76            loss_fct = CrossEntropyLoss()
 77            # Only keep active parts of the loss
 78            b_active_loss = b_input_mask.view(-1) == 1
 79            b_active_logits = b_outputs.view(-1, config.num_labels)[b_active_loss]
 80            b_active_labels = b_labels.view(-1)[b_active_loss]
 81            loss = loss_fct(b_active_logits, b_active_labels)
 82            acc = np.mean(np.argmax(b_active_logits.detach().cpu().numpy(), axis=1).flatten() == b_active_labels.detach().cpu().numpy().flatten())
 83
 84        eval_loss += loss.mean().item()
 85        eval_acc += acc
 86        nb_eval_steps += 1    
 87
 88    if e % 10 ==0:
 89
 90        print(f"Epoch: {e}")
 91        print(f"Train loss: {(tr_loss/nb_tr_steps)}")
 92        print(f"Train acc: {(tr_acc/nb_tr_steps)}")
 93        print(f"Train Time: {(time.time()-start_time)/60} mins")  
 94
 95        print(f"Validation loss: {eval_loss/nb_eval_steps}")
 96        print(f"Validation Accuracy: {(eval_acc/nb_eval_steps)}") 
 97
 98        train_losses.append(tr_loss/nb_tr_steps)
 99        train_accs.append(tr_acc/nb_tr_steps)
100        eval_losses.append(eval_loss/nb_eval_steps)
101        eval_accs.append(eval_acc/nb_eval_steps)
102
103
104        tr_loss, tr_acc, nb_tr_steps = 0, 0, 0 
105        eval_loss, eval_acc, nb_eval_steps = 0, 0, 0 
106        start_time = time.time() 
107
108        torch.save({'model_state_dict': model_tokenclassification.state_dict(),'optimizer_state_dict': optimizer.state_dict(),
109           'epoch': e, 'train_losses': train_losses,'train_accs': train_accs, 'eval_losses':eval_losses,'eval_accs':eval_accs}
110       , 'finetune_checkpoint')
111
112plot.plot(train_losses)
113plot.plot(train_accs)
114plot.plot(eval_losses)
115plot.plot(eval_accs)
116plot.legend(labels = ['train_loss','train_accuracy','validation_loss','validation_accuracy'])

第五步:预测

1#Prediction
 2
 3def predict(texts):
 4    tokenized_texts = [tokenizer.tokenize(txt) for txt in texts]
 5    input_ids = pad_sequences([tokenizer.convert_tokens_to_ids(txt) for txt in tokenized_texts],
 6                              maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
 7    attention_mask = [[float(i>0) for i in ii] for ii in input_ids]
 8
 9    input_ids = torch.tensor(input_ids)
10    attention_mask = torch.tensor(attention_mask)
11
12    dataset = TensorDataset(input_ids, attention_mask)
13    datasampler = SequentialSampler(dataset)
14    dataloader = DataLoader(dataset, sampler=datasampler, batch_size=BATCH_SIZE) 
15
16    predicted_labels = []
17
18    for batch in dataloader:
19        batch = tuple(t for t in batch)
20        b_input_ids, b_input_mask = batch
21
22        with torch.no_grad():
23            logits = model_tokenclassification(b_input_ids, token_type_ids=None,
24                           attention_mask=b_input_mask)
25
26            predicted_labels.append(np.multiply(np.argmax(logits.detach().cpu().numpy(),axis=2), b_input_mask.detach().cpu().numpy()))
27    # np.concatenate(predicted_labels), to flatten list of arrays of batch_size * max_len into list of arrays of max_len
28    return np.concatenate(predicted_labels).astype(int), tokenized_texts
29
30def get_dish_candidate_names(predicted_label, tokenized_text):
31    name_lists = []
32    if len(np.where(predicted_label>0)[0])>0:
33        name_idx_combined = np.where(predicted_label>0)[0]
34        name_idxs = np.split(name_idx_combined, np.where(np.diff(name_idx_combined) != 1)[0]+1)
35        name_lists.append([" ".join(np.take(tokenized_text,name_idx)) for name_idx in name_idxs])
36        # If there duplicate names in the name_lists
37        name_lists = np.unique(name_lists)
38        return name_lists
39    else:
40        return None
41
42texts = df_data_val.review.values
43predicted_labels, _ = predict(texts)
44df_data_val['predicted_review_label'] = list(predicted_labels)
45df_data_val['predicted_name']=df_data_val.apply(lambda row: get_dish_candidate_names(row.predicted_review_label, row.review_tokens)
46                                                , axis=1)
47
48texts = df_data_train.review.values
49predicted_labels, _ = predict(texts)
50df_data_train['predicted_review_label'] = list(predicted_labels)
51df_data_train['predicted_name']=df_data_train.apply(lambda row: get_dish_candidate_names(row.predicted_review_label, row.review_tokens)
52                                                , axis=1)
53
54(df_data_val)

实验结果

“瘦身成功”的ALBERT,能取代BERT吗?

“瘦身成功”的ALBERT,能取代BERT吗?

可以看到,模型成功地从用餐评论中,提取出了菜名。

模型比拼

从上面的实战应用中可以看到,ALBERT虽然很lite,结果也可以说相当不错。

那么,参数少、结果好,是否就可以替代BERT呢?

“瘦身成功”的ALBERT,能取代BERT吗?

我们可以仔细看下二者实验性能的比较,这里的Speedup是指训练时间。

因为数据数据少了,分布式训练时吞吐上去了,所以ALBERT训练更快。但推理时间还是需要和BERT一样的transformer计算。

所以可以总结为:

  • 在相同的训练时间下,ALBERT效果要比BERT好。
  • 在相同的推理时间下,ALBERT base和large的效果都是没有BERT好。

此外,Naman Bansal认为,由于ALBERT的结构,实现ALBERT的计算代价比BERT要高一些。

所以,还是 “鱼和熊掌不可兼得” 的关系,要想让ALBERT完全超越、替代BERT,还需要做更进一步的研究和改良。

传送门

博客地址:

https://medium.com/@namanbansal9909/should-we-shift-from-bert-to-albert-e6fbb7779d3e

版权所有,未经授权不得以任何形式转载及使用,违者必究。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Charlotte's Web

Charlotte's Web

E. B. White / Scholastic / 2004 / USD 0.01

This is the tale of how a little girl named Ferm, with the help of a friendly spider, saved her pig, Wilbur, from the usual fate of nice fat little pigs.一起来看看 《Charlotte's Web》 这本书的介绍吧!

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

html转js在线工具
html转js在线工具

html转js在线工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具