图注意力网络(GAT) TensorFlow实现

栏目: IT技术 · 发布时间: 5年前

内容简介:图注意力网络来自 Graph Attention Networks,ICLR 2018.输入

论文

图注意力网络来自 Graph Attention Networks,ICLR 2018. https://arxiv.org/abs/1710.10903

GAT层

输入

图注意力网络(GAT) TensorFlow实现

N为节点的个数,F为feature的个数,这表示输入为N个节点的每个节点的F个feature

输出

图注意力网络(GAT) TensorFlow实现

表示对这N个节点的 F’ 个输出,输出位N个节点的每个节点的F’个feature

注意力机制

图注意力网络(GAT) TensorFlow实现

图注意力网络(GAT) TensorFlow实现

GAT.py

import tensorflow as tf
from tensorflow import keras
from tensorflow.python.keras import activations
from tensorflow.python.keras import constraints
from tensorflow.python.keras import initializers
from tensorflow.python.keras import regularizers
 
 
class GraphAttentionLayer(keras.layers.Layer):
    def compute_output_signature(self, input_signature):
        pass
 
    def __init__(self,
                 input_dim,
                 output_dim,
                 adj,
                 nodes_num,
                 dropout_rate=0.0,
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 coef_dropout=0.0,
                 **kwargs):
        """
        :param input_dim: 输入的维度
        :param output_dim: 输出的维度,不等于input_dim
        :param adj: 具有自环的tuple类型的邻接表[coords, values, shape], 可以采用sp.coo_matrix生成
        :param nodes_num: 点数量
        :param dropout_rate: 丢弃率,防过拟合,默认0.5
        :param activation: 激活函数
        :param use_bias: 偏移,默认True
        :param kernel_initializer: 权值初始化方法
        :param bias_initializer: 偏移初始化方法
        :param kernel_regularizer: 权值正则化
        :param bias_regularizer: 偏移正则化
        :param activity_regularizer: 输出正则化
        :param kernel_constraint: 权值约束
        :param bias_constraint: 偏移约束
        :param coef_dropout: 互相关系数丢弃,默认0.0
        :param kwargs:
        """
        super(GraphAttentionLayer, self).__init__()
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.support = [tf.SparseTensor(indices=adj[0][0], values=adj[0][1], dense_shape=adj[0][2])]
        self.dropout_rate = dropout_rate
        self.coef_drop = coef_dropout
        self.nodes_num = nodes_num
        self.kernel = None
        self.mapping = None
        self.bias = None
 
    def build(self, input_shape):
        """
        只执行一次
        """
        self.kernel = self.add_weight(shape=(self.input_dim, self.output_dim),
                                      initializer=self.kernel_initializer,
                                      regularizer=self.kernel_regularizer,
                                      constraint=self.kernel_constraint,
                                      trainable=True)
 
        if self.use_bias:
            self.bias = self.add_weight(shape=(self.nodes_num, self.output_dim),
                                        initializer=self.kernel_initializer,
                                        regularizer=self.kernel_regularizer,
                                        constraint=self.kernel_constraint,
                                        trainable=True)
        print('[GAT LAYER]: GAT W & b built.')
 
    def call(self, inputs, training=True):
        # 完成输入到输出的映射关系
        # inputs = tf.nn.l2_normalize(inputs, 1)
        raw_shape = inputs.shape
        inputs = tf.reshape(inputs, shape=(1, raw_shape[0], raw_shape[1]))  # (1, nodes_num, input_dim)
        mapped_inputs = keras.layers.Conv1D(self.output_dim, 1, use_bias=False)(inputs)  # (1, nodes_num, output_dim)
        # mapped_inputs = tf.nn.l2_normalize(mapped_inputs)
 
        sa_1 = keras.layers.Conv1D(1, 1)(mapped_inputs)  # (1, nodes_num, 1)
        sa_2 = keras.layers.Conv1D(1, 1)(mapped_inputs)  # (1, nodes_num, 1)
 
        con_sa_1 = tf.reshape(sa_1, shape=(raw_shape[0], 1))  # (nodes_num, 1)
        con_sa_2 = tf.reshape(sa_2, shape=(raw_shape[0], 1))  # (nodes_num, 1)
 
        con_sa_1 = tf.cast(self.support[0], dtype=tf.float32) * con_sa_1  # (nodes_num, nodes_num) W_hi
        con_sa_2 = tf.cast(self.support[0], dtype=tf.float32) * tf.transpose(con_sa_2, [1, 0])  # (nodes_num, nodes_num) W_hj
 
        weights = tf.sparse.add(con_sa_1, con_sa_2)  # concatenation
        weights_act = tf.SparseTensor(indices=weights.indices,
                                      values=tf.nn.leaky_relu(weights.values),
                                      dense_shape=weights.dense_shape)  # 注意力互相关系数
        attention = tf.sparse.softmax(weights_act)  # 输出注意力机制
        inputs = tf.reshape(inputs, shape=raw_shape)
        if self.coef_drop > 0.0:
            attention = tf.SparseTensor(indices=attention.indices,
                                        values=tf.nn.dropout(attention.values, self.coef_dropout),
                                        dense_shape=attention.dense_shape)
        if training and self.dropout_rate > 0.0:
            inputs = tf.nn.dropout(inputs, self.dropout_rate)
        if not training:
            print("[GAT LAYER]: GAT not training now.")
 
        attention = tf.sparse.reshape(attention, shape=[self.nodes_num, self.nodes_num])
        value = tf.matmul(inputs, self.kernel)
        value = tf.sparse.sparse_dense_matmul(attention, value)
 
        if self.use_bias:
            ret = tf.add(value, self.bias)
        else:
            ret = tf.reshape(value, (raw_shape[0], self.output_dim))
        return self.activation(ret)

参考

https://blog.csdn.net/weixin_36474809/article/details/89401552

https://github.com/PetarV-/GAT


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

计数组合学(卷2)

计数组合学(卷2)

斯坦利 / 机械工业出版社 / 2004-11-15 / 59.00元

本书介绍了生成函数组合、树、代数生成函数、D有限生成函数、非交换生成函数和对称函数。关于对称函数的论述只适用于研究生的入门课程并着重于组合学方面,尤其是Robinson-Schensted-Knuth算法,还讨论了对称函数与表示论之间的联系。附录(由Sergey Fomin编写)中更深入地讨论了对称函数理论,包括jeu de taquin和Littlewood-richardson规则。另外,书中......一起来看看 《计数组合学(卷2)》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具