CVPR 2020 | IR-Net: 信息保留的二值神经网络(已开源)

栏目: IT技术 · 发布时间: 4年前

CVPR 2020 | IR-Net: 信息保留的二值神经网络(已开源)

文 | 商汤

编 | 贾伟

在CVPR 2020上,商汤研究院链接与编译组和北京航空航天大学刘祥龙老师团队提出了一种旨在优化前后向传播中信息流的实用、高效的网络二值化新算法IR-Net。

CVPR 2020 | IR-Net: 信息保留的二值神经网络(已开源)

论文地址: https://arxiv.org/abs/1909.10788

项目地址:https://github.com/htqin/IR-Net

不同于以往二值神经网络大多关注量化误差方面,本文首次从统一信息的角度研究了二值网络的前向和后向传播过程,为网络二值化机制的研究提供了全新的视角。同时,该工作首次在ARM设备上进行了先进二值化算法效率验证,显示了IR-Net部署时的优异性能和极高的实用性, 有助于解决工业界关注的神经网络二值化落地的核心问题。

1

动   机

二值神经网络因其存储量小、推理效率高而受到社会的广泛关注 [1]。然而与全精度的对应方法相比,现有的量化方法的精度仍然存在显著的下降。

对神经网络的研究表明,网络的多样性是模型达到高性能的关键[2],保持这种多样性的关键是:(1) 网络在前向传播过程中能够携带足够的信息;(2) 反向传播过程中,精确的梯度为网络优化提供了正确的信息。

二值神经网络的性能下降主要是由二值化的有限表示能力和离散性造成的,这导致了前向和反向传播的严重信息损失,模型的多样性急剧下降。同时,在二值神经网络的训练过程中,离散二值化往往导致梯度不准确和优化方向错误。如何解决以上问题,得到更高精度的二值神经网络?这一问题被研究者们广泛关注,本文的动机在于:通过信息保留的思路,设计更高性能的二值神经网络。

基于以上动机,本文首次从信息流的角度研究了网络二值化,提出了一种新的信息保持网络(IR-Net):

1)在前向传播中引入了一种称为Libra参数二值化(Libra-PB)的平衡标准化量化方法,最大化量化参数的信息熵和最小化量化误差;

2) 在反向传播中采用误差衰减估计器(EDE)来计算梯度,保证训练开始时的充分更新和训练结束时的精确梯度。

IR-Net提供了一个全新的角度来理解二值神经网络是如何运行的,并且具有很好的通用性,可以在标准的网络训练流程中进行优化。作者使用CIFAR-10和ImageNet数据集上的图像分类任务来评估提出的IR-Net,同时借助开源二值化推理库daBNN进行了部署效率验证。

2

方法设计

高精度二值神经网络训练的瓶颈主要在于训练过程中严重的信息损失。前向sign函数和后向梯度逼近所造成的信息损失严重影响了二值神经网络的精度。为了解决以上问题,本文提出了一种新的信息保持网络(IR-Net)模型,它保留了训练过程中的信息,实现了二值化模型的高精度。

CVPR 2020 | IR-Net: 信息保留的二值神经网络(已开源)

1、前向传播中的Libra Parameter Binarization(Libra-PB)

在此之前,绝大多数网络二值化方法试图减小二值化操作的量化误差。然而,仅通过最小化量化误差来获得一个良好的二值网络是不够的。因此,Libra-PB设计的关键在于:使用信息熵指标,最大化二值网络前向传播过程中的信息流。

根据信息熵的定义,在二值网络中,二值参数Qx(x)的熵可以通过以下公式计算:

CVPR 2020 | IR-Net: 信息保留的二值神经网络(已开源)

如果单纯地追求量化误差最小化,在极端情况下,量化参数的信息熵甚至可以接近于零。因此,Libra-PB将量化值的量化误差和二值参数的信息熵同时作为优化目标,定义为:

CVPR 2020 | IR-Net: 信息保留的二值神经网络(已开源)

在伯努利分布假设下,当p=0.5时,量化值的信息熵取最大值。

因此,在Libra-PB通过标准化和平衡操作获得标准化平衡权重,如图2所示,在Bernoulli分布下,由Libra-PB量化的参数具有最大的信息熵。有趣的是,对权重的简单变换也可以极大改善前向过程中激活的信息流。因为此时,各层的二值激活值信息熵同样可以最大化,这意味着特征图中信息可以被保留。

在以往的二值化方法中,为了使量化误差减小,几乎所有方法都会引入浮点尺度因子来从数值上逼近原始参数,这无疑将高昂的浮点运算引入其中。在Libra-PB中,为了进一步减小量化误差,同时避免以往二值化方法中代价高昂的浮点运算,Libra-PB引入了整数移位标量s,扩展了二值权重的表示能力。

因此最终,针对正向传播的Libra参数二值化可以表示如下:

CVPR 2020 | IR-Net: 信息保留的二值神经网络(已开源)

IR-Net的主要运算操作可以表示为:

CVPR 2020 | IR-Net: 信息保留的二值神经网络(已开源)

CVPR 2020 | IR-Net: 信息保留的二值神经网络(已开源)

2、反向传播中的Error Decay Estimator(EDE)

由于二值化的不连续性,梯度的近似对于反向传播是不可避免的,这种对sign函数的近似带来了两种梯度的信息损失,包括截断范围外参数更新能力下降造成的信息损失,和截断范围内近似误差造成的信息损失。为了更好的保留反向传播中由损失函数导出的信息,平衡各训练阶段对于梯度的要求,EDE引入了一种渐进的两阶段近似梯度方法。

第一阶段: 保留反向传播算法的更新能力。将梯度估计函数的导数值保持在接近1的水平,然后逐步将截断值从一个大的数字降到1。利用这一规则,近似函数从接近Identity函数演化到Clip函数,从而保证了训练早期的更新能力。

第二阶段: 使0附近的参数被更准确地更新。将截断保持为1,并逐渐将导数曲线演变到阶梯函数的形状。利用这一规则,近似函数从Clip函数演变到sign函数,从而保证了前向和反向传播的一致性。

各阶段EDE的形状变化如图3(c)所示。通过该设计,EDE减小了前向二值化函数和后向近似函数之间的差异,同时所有参数都能得到合理的更新。

CVPR 2020 | IR-Net: 信息保留的二值神经网络(已开源)

3

实验结果

作者使用了两个基准数据集:CIFAR-10和ImageNet(ILSVRC12)进行了实验。在两个数据集上的实验结果表明,IR-Net比现有的最先进方法更具竞争力。

CVPR 2020 | IR-Net: 信息保留的二值神经网络(已开源)

CVPR 2020 | IR-Net: 信息保留的二值神经网络(已开源)

4

Deployment Efficiency

为了进一步验证IR-Net在实际移动设备中的部署效率,作者在1.2GHz 64位四核ARM Cortex-A53的Raspberry Pi 3B上进一步实现了IR-Net,并在实际应用中测试了其真实速度。表5显示,IR-Net的推理速度要快得多,模型尺寸也大大减小,而且IR-Net中的位移操作几乎不会带来额外的推理时间和存储消耗。

CVPR 2020 系列报道

相关报道:

CVPR 2020接收论文公布:录用1470篇,接收率“二连降”,仅22% !

论文集:

01. 17篇入选CVPR 2020,腾讯优图 9 篇精选论文详解

02. 22篇入选,百度 15 篇 CVPR 2020 精选论文详解

论文解读:

01. [微软] 古有照妖镜,今有换脸识别机,微软 CVPR 2020力作,让伪造人脸无处遁形

02. [港大] PolarMask:将实例分割统一到FCN,有望在工业界大规模应用

03. [牛津大学] RandLA-Net:大场景三维点云语义分割新框架(已开源)

04. [北大&华为] CIFAR-10上做NAS,仅需单卡半天!华为提出基于进化算法和权值共享CARS模型

05. [南京大学] 化繁为简,弱监督目标定位领域的新SOTA - 伪监督目标定位方法

06. [UC 伯克利] 挑战 11 种 GAN的图像真伪,DeepFake鉴别一点都不难

07. [哈斯特帕大学] 学习一个宫崎骏画风的图像风格转换GAN

08. [人大&阿德莱德大学] 看图说话之随心所欲:细粒度可控的图像描述自动生成

09.[北京大学]PQ-NET:序列化的三维形状生成网络

10. 视觉-语言导航新篇章:真实场景下的远程物体定位导航任务

11. 室内设计师失业?针对语言描述的自动三维场景设计算法

12. 深度视觉推理2.0:组合式目标指代理解

13.  浙大李俊成:用无监督强化学习方法来获得迁移能力(视频解读)

14. 细粒度文本视频跨模态检索

CVPR 2020 | IR-Net: 信息保留的二值神经网络(已开源)

CVPR 2020 | IR-Net: 信息保留的二值神经网络(已开源) 点击“ 阅读 原文 ” 查看 CVPR 系列论文解读


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

产品型社群

产品型社群

李善友 / 机械工业出版社 / 2015-3-1 / CNY 69.00

传统模式企业正在直面一场空前的“降维战争”, 结局惨烈,或生或死。 传统模式很难避免悲惨下场, 诺基亚等昔日庞然大物轰然倒塌, 柯达发明了数码成像技术却依然破产, 新商业的兴起到底遵循的是什么模式? 微信轻而易举干掉了运营商的短信业务, “好未来”为何让传统教育不明觉厉? 花间堂为什么不是酒店,而是入口? 将来不会有互联网企业与传统企业之分, ......一起来看看 《产品型社群》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

MD5 加密
MD5 加密

MD5 加密工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具