内容简介:本文始发于个人公众号:
本文始发于个人公众号: TechFlow ,原创不易,求个关注
今天是 LeetCode系列第22篇 文章,今天讲的内容是高精度算法。
今天和大家讨论的算法是高精度,对应的LeetCode是第43题。题面其实没什么好说的,以字符串的形式给定两个数字,要求返回这两个数字的乘积。之所以是以字符串的形式给数字是因为 这个数字可能会非常大 ,题目当中给定的范围是110位的数字。对于 Python 来说这不是问题,但是对于C++和 Java 等语言来说这么大的数字是无法以int类型存储的,所以必须要使用字符串来接收。
如果你使用Python,你可以不用任何算法就AC这题,但是这没有任何意义。那么 正确的方法 应该怎么做呢?
高精度与打竖式
这就需要我们的 高精度算法 出场了,其实严格说起来高精度并不是一种算法,而是一种思想。这个思想非常朴素,我敢保证我们每一个人都学过。还记得小学的时候,我们计算多位数的乘法是怎么算的吗?大家应该都不陌生才对,就是 打竖式 ,like this:
我们人类要打竖式是因为我们 只能计算一位数以内的加减乘除 ,超过一位的人脑不能直接计算,我们就需要用纸笔记录下来进行计算。
纸笔计算的方法很简单,就是一位一位地计算,用每一位数字依次去计算乘法,最后再移位相加起来就得到结果了。
比如在上图的第一个例子当中,我们要计算15 * 16,我们先计算6 * 15的结果,再计算1 * 15,最后将两个结果错位相加,就得到了答案。我们要错位的原因也很简单,因为我们在计算15 * 1的时候,其实背后代表的是15 * 10。我们继续拆分问题,当我们计算6和15相乘的时候,又是怎么计算的呢?顺着这个思路,整个过程可以进一步被划分成先计算6和5相乘,再计算6和1相乘。
最后,我们把两个较大数字的相乘拆分成了在每一位上的数字相乘。到了这里,剩下的就简单了,也就是说我们可以 把这两个很大的数字用两个数组来存储 ,数组当中的每一位存储数字上的一位。
比如我们要计算123 * 224, 我们的第一个数组是[1, 2, 3],我们的第二个数组是[2, 2, 4]。我们仿照乘法竖式中的方法计算这两个数组当中两两的乘积,并将它们拼装成答案。
1 2 3 * 2 2 4 ____________ 4 9 2 2 4 6 2 4 6 ____________ 2 7 5 5 2
同样我们用数组来存储中间和最后的结果,最后的结果就是:[2, 7, 5, 5, 2]。由于题目需要我们要返回的是 字符串 ,所以我们还需要将数组里的内容再拼接成字符串。
这种 用数组来模拟数字进行加减乘除运算的方法 就叫做高精度算法,相信大家也都看到了,严格说起来这并不是一个算法,而只是一种思想。今天的题目出的是乘法,我们利用同样的方法也可以计算加减和除法。其中加减法非常简单,而除法则要复杂得多,也是高精度当中最难实现的部分。这里我们不做过多的拓展,计算的方法同样是打竖式,感兴趣的同学可以自行实现。
进位和前导零
当我们理清楚了打竖式的方法之后,我们还要面临 进位和前导零 的问题。
进位应该很容易理解,我们需要在计算乘法的时候判断当前位置的元素是否大于等于10,如果超过10的话,我们则需要进行进位。我们只需要将它除以10,得到的结果就是我们需要进位的值。除此之外就是 前导零 的问题,我们都知道除了零以外的合法数字是不允许首位出现0的,但是由于我们计算的是乘法,所以当其中某一个数为0会得到整体的结果为0,但是表示在数组当中则是多个0.
举个简单的例子,比如123 * 0,最后得到的应该是0,但是由于我们用数组表示了乘法运算当中的每一位,并且还进行了加法计算,所以会导致出现000的结果。这种情况我们要做特殊的处理,不过这也不复杂。最后我们把上面所有的思路都整理一下,就可以得到结果了。
我们来看下代码:
class Solution: def multiply(self, num1: str, num2: str) -> str: # 将字符串转化成数组 # 翻转数组,因为我们用第0位表示个位 arr1 = [ord(i) - ord('0') for i in num1][:: -1] arr2 = [ord(i) - ord('0') for i in num2][:: -1] # 创建结果数组,可以证明结果的长度最多是n + m n, m = len(arr1), len(arr2) ret = [0 for i in range(n + m + 1)] for i in range(n): for j in range(m): # 按位相乘,计算进位 ret[i + j] += arr1[i] * arr2[j] if ret[i+j] >= 10: ret[i+j+1] += ret[i+j] // 10 ret[i+j] %= 10 # 最后把数组再转化成字符串返回 # 去除前导零 result = ''.join(map(str, ret))[::-1].lstrip('0') return result if len(result) > 0 else '0'
今天的题只是 Medium 难度,并不算困难,会选这题的原因主要是为了高精度算法。高精度算法本身并不难,也并不常用即使是在算法比赛当中也不常见。但是它给了我们一个思路,当我们要计算的数值超过计算机目前承载能力的时候,我们还有什么方法?
当然这题我们也可以取巧,因为Python当中内置了大整数,当它检测到我们的计算结果超过范围的时候,会自动转化成大整数来进行计算。所以这题如果我们使用Python,可以只用几行代码搞定:
class Solution: def multiply(self, num1: str, num2: str) -> str: num1 = int(num1) num2 = int(num2) return str(num1 * num2)
今天关于高精度算法的内容就到这里,如果觉得有所收获,请顺手点个 关注或者转发 吧,你们的举手之劳对我来说很重要。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- C++之高精度详解
- 蓝桥杯 ADV-121 算法提高 高精度加法
- 系统的讲解 - PHP 浮点数高精度运算
- CVPR 2019 | STGAN: 人脸高精度属性编辑模型
- FaceBoxes:官方开源 CPU 实时高精度人脸检测器
- 高精度、可用的定时任务管理工具 cknit 开源啦
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Java Servlet & JSP Cookbook
Bruce W. Perry / O'Reilly Media / 2003-12-1 / USD 49.99
With literally hundreds of examples and thousands of lines of code, the Java Servlet and JSP Cookbook yields tips and techniques that any Java web developer who uses JavaServer Pages or servlets will ......一起来看看 《Java Servlet & JSP Cookbook》 这本书的介绍吧!