标星★ 置顶 公众号 爱你们 ♥
作者:IAN J. HISSEY 编译:方的馒头
1
前言
2
在量化研究中引入机器学习
3
自动化机器学习
4
建立和测试模型
为了表明机器学习可用于增强传统的量化因子,我们建立了中国A股的股票预测模型。我们为2012年12月至2019年8月编制了中证800指数的股票表现和各种因子数据的月度概况。我们将目标变量设置为股票的未来一个月收益,并使用原始投资组合模型中的因子。
5
不要混淆样本内和样本外
6
屏蔽噪音并一次建模
与机器学习的典型用例(如预测同店销售额或个人银行贷款违约的可能性)不同,股票收益数据是嘈杂的。众所周知,时间序列金融数据受复杂行为困扰,包括异方差性、黑天鹅和尾部相关性。在我们的案例中,我们并不试图预测市场收益,而只是预测要投资的股票。为了最大程度地减少这些现象的影响,我们可以仅关注基准相对或同级相对表现,以将噪声降至最低。
7
简化问题陈述以产生更好的模型
8
解释你的模型与构建模型一样重要
此图表解释了特征与预测的关系。这些可以是并且通常是非线性的。就价值而言,公司的风险敞口越高,我们模型中的预测就越高。
然后,我们可以从理论到实践的理解,并研究该策略的交易方式。下图显示了该模型推荐的公司的SWS行业。Y轴在1到5的范围内显示一个行业的相对重要性,其中1表示最高,气泡的大小表示观测的频率。我们的模型在收购电子行业的公司时避免了金融和公用事业。
然后,我们根据之前强调的国有企业标志将预测分为两组。通过分析各组股票收益的相关性,我们发现该模型根据公司是否为国有企业给出了截然不同的建议。对于国有企业,我们的模型更倾向于价值股票,而对于民营企业,我们的模型倾向于对成长型公司进行更多投资。
9
尝试多种方法并快速失败
10
结论
2020年第 66 篇文章
量化投资与机器学习微信公众号,是业内垂直于 Quant、MFE、 Fintech、AI、ML 等领域的 量化类主流自媒体。 公众号拥有来自 公募、私募、券商、期货、银行、保险资管、海外 等众多圈内 18W+ 关注者。每日发布行业前沿研究成果和最新量化资讯。
你点的每个“在看”,都是对我们最大的鼓励
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 开发对接过程中的教训
- 使用Kubernetes两年来的经验教训
- 多任务深度学习的三个经验教训
- 生产环境使用一年Kubernetes的经验教训
- 机器学习的教训:5家公司分享的错误经验
- 医疗领域构建自然语言处理系统的经验教训
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
无懈可击的Web设计
西德霍姆 / 刘建宁 / 清华大学出版社 / 2009-4 / 59.90元
一个网站,无论视觉上多么美观,内容多么丰富,如果不能面向最广泛的用户群,那它就不算是真正成功的网站。《无懈可击的Web设计:利用XHTML和CSS提高网站的灵活性与适应性》是Web标准设计领域的公认专家Dan Cederholm的倾力之作,向您描述了基于Web标准的设计策略,以适应各种各样的用户浏览方式。书中每一章的开头都给出了一个基于传统HTML技术的实例,然后对它进行重构,指出它的局限性,并利......一起来看看 《无懈可击的Web设计》 这本书的介绍吧!