内容简介:Continuous data streams arise in many applications like the following:Sometimes these pipelines are very simple, with a linear sequence of processing steps:And sometimes these pipelines are more complex, involving branching, look-back periods, feedback int
Continuous data streams arise in many applications like the following:
- Log processing from web servers
- Scientific instrument data like telemetry or image processing pipelines
- Financial time series
- Machine learning pipelines for real-time and on-line learning
Sometimes these pipelines are very simple, with a linear sequence of processing steps:
And sometimes these pipelines are more complex, involving branching, look-back periods, feedback into earlier stages, and more.
Streamz endeavors to be simple in simple cases, while also being powerful enough to let you define custom and powerful pipelines for your application.
Why not Python generator expressions?
Python users often manage continuous sequences of data with iterators or generator expressions.
def fib():
a, b = 0, 1
while True:
yield a
a, b = b, a + b
sequence = (f(n) for n in fib())
However iterators become challenging when you want to fork them or control the flow of data. Typically people rely on tools like itertools.tee , and zip .
x1, x2 = itertools.tee(x, 2) y1 = map(f, x1) y2 = map(g, x2)
However this quickly become cumbersome, especially when building complex pipelines.
以上所述就是小编给大家介绍的《Streamz: Python pipelines to manage continuous streams of data》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
数据挖掘概念与技术
(加)Jiawei Han;Micheline Kamber / 范明、孟小峰 / 机械工业 / 2007-3 / 55.00元
《数据挖掘概念与技术(原书第2版)》全面地讲述数据挖掘领域的重要知识和技术创新。在第1版内容相当全面的基础上,第2版展示了该领域的最新研究成果,例如挖掘流、时序和序列数据以及挖掘时间空间、多媒体、文本和Web数据。本书可作为数据挖掘和知识发现领域的教师、研究人员和开发人员的一本必读书。 《数据挖掘概念与技术(原书第2版)》第1版曾是受读者欢迎的数据挖掘专著,是一本可读性极佳的教材。第2版充实了数据......一起来看看 《数据挖掘概念与技术》 这本书的介绍吧!