内容简介:用C语言从零开始实现SQLite clone系列:现在,我们支持构建多级B树,但在此过程中,我们破坏了select statements。这是一个插入15行并打印的测试案例:但当我们执行测试时,输出如下:
用 C语言 从零开始实现SQLite clone系列:
- REPL的介绍和设置
- 世上最简单的 SQL 编译器和虚拟机
- 一个在内存中仅能做追加操作的单表数据库
- 第一次测试 (含bug处理)
- 持久化存储
- The Cursor Abstraction
- B树介绍
- B树叶子节点的格式
- 二进制查询和重复键
- 叶子节点的拆分
- B树的递归搜索
现在,我们支持构建多级B树,但在此过程中,我们破坏了select statements。这是一个插入15行并打印的测试案例:
+ it 'prints all rows in a multi-level tree' do + script = [] + (1..15).each do |i| + script << "insert #{i} user#{i} person#{i}@example.com" + end + script << "select" + script << ".exit" + result = run_script(script) + + expect(result[15...result.length]).to match_array([ + "db > (1, user1, person1@example.com)", + "(2, user2, person2@example.com)", + "(3, user3, person3@example.com)", + "(4, user4, person4@example.com)", + "(5, user5, person5@example.com)", + "(6, user6, person6@example.com)", + "(7, user7, person7@example.com)", + "(8, user8, person8@example.com)", + "(9, user9, person9@example.com)", + "(10, user10, person10@example.com)", + "(11, user11, person11@example.com)", + "(12, user12, person12@example.com)", + "(13, user13, person13@example.com)", + "(14, user14, person14@example.com)", + "(15, user15, person15@example.com)", + "Executed.", "db > ", + ]) + end
但当我们执行测试时,输出如下:
db > select (2, user1, person1@example.com) Executed.
这有点奇怪,输出只打印了一行,而且输出也不对(用户名和ID对不上)。
问题源于execute_select()从表头开始执行,而我们的现在用的table_start()函数对根节点的返回值是cell0,但我们B树的根节点现在是内部节点,而且并没有存储任何行。节点为叶时,必须保留已打印的数据。 execute_select()应该实际上返回最左边的叶节点的cell 0。
所以我们要摆脱掉旧的代码:
-Cursor* table_start(Table* table) { - Cursor* cursor = malloc(sizeof(Cursor)); - cursor->table = table; - cursor->page_num = table->root_page_num; - cursor->cell_num = 0; - - void* root_node = get_page(table->pager, table->root_page_num); - uint32_t num_cells = *leaf_node_num_cells(root_node); - cursor->end_of_table = (num_cells == 0); - - return cursor; -}
部署一段新代码来查找Key 0(最小的键),即使key0在表中不存在,系统也会返回最低的ID(在最左侧叶子节点)
+Cursor* table_start(Table* table) { + Cursor* cursor = table_find(table, 0); + + void* node = get_page(table->pager, cursor->page_num); + uint32_t num_cells = *leaf_node_num_cells(node); + cursor->end_of_table = (num_cells == 0); + + return cursor; +}
有了这些变化,程序也只是打印出一个节点的行:
db > select (1, user1, person1@example.com) (2, user2, person2@example.com) (3, user3, person3@example.com) (4, user4, person4@example.com) (5, user5, person5@example.com) (6, user6, person6@example.com) (7, user7, person7@example.com) Executed. db >
我们的B树有15个条目,由一个内部节点和两个叶子节点组成,看起来像这样:
要扫描整个表,我们需要在到达第一个叶子节点的末尾之后跳到第二个叶子节点。为了实现这个功能,我们将在叶子节点标题中保存一个名为“ next_leaf”的新字段,该字段将用来保存叶子节点右侧同级别节点的页码。最右边的叶子节点的next_leaf值为0,表示没有同级节点(页面0始终为表的根节点保留)。
更新叶节点的头格式来添加新字段:
const uint32_t LEAF_NODE_NUM_CELLS_SIZE = sizeof(uint32_t); const uint32_t LEAF_NODE_NUM_CELLS_OFFSET = COMMON_NODE_HEADER_SIZE; -const uint32_t LEAF_NODE_HEADER_SIZE = - COMMON_NODE_HEADER_SIZE + LEAF_NODE_NUM_CELLS_SIZE; +const uint32_t LEAF_NODE_NEXT_LEAF_SIZE = sizeof(uint32_t); +const uint32_t LEAF_NODE_NEXT_LEAF_OFFSET = + LEAF_NODE_NUM_CELLS_OFFSET + LEAF_NODE_NUM_CELLS_SIZE; +const uint32_t LEAF_NODE_HEADER_SIZE = COMMON_NODE_HEADER_SIZE + + LEAF_NODE_NUM_CELLS_SIZE + + LEAF_NODE_NEXT_LEAF_SIZE;
添加方法以访问新字段:
+uint32_t* leaf_node_next_leaf(void* node) { + return node + LEAF_NODE_NEXT_LEAF_OFFSET; +}
当初始化新的叶子节点时,将next_leaf的值设置为0
@@ -322,6 +330,7 @@ void initialize_leaf_node(void* node) { set_node_type(node, NODE_LEAF); set_node_root(node, false); *leaf_node_num_cells(node) = 0; + *leaf_node_next_leaf(node) = 0; // 0 represents no sibling }
当我们拆分叶节点时,都更新同级指针。旧叶子的同级节点变成新叶子,而新叶子的同级变成以前的旧叶子的同级。
@@ -659,6 +671,8 @@ void leaf_node_split_and_insert(Cursor* cursor, uint32_t key, Row* value) { uint32_t new_page_num = get_unused_page_num(cursor->table->pager); void* new_node = get_page(cursor->table->pager, new_page_num); initialize_leaf_node(new_node); + *leaf_node_next_leaf(new_node) = *leaf_node_next_leaf(old_node); + *leaf_node_next_leaf(old_node) = new_page_num;
增加新的字段要相应改变一些常量:
it 'prints constants' do script = [ ".constants", @@ -199,9 +228,9 @@ describe 'database' do "db > Constants:", "ROW_SIZE: 293", "COMMON_NODE_HEADER_SIZE: 6", - "LEAF_NODE_HEADER_SIZE: 10", + "LEAF_NODE_HEADER_SIZE: 14", "LEAF_NODE_CELL_SIZE: 297", - "LEAF_NODE_SPACE_FOR_CELLS: 4086", + "LEAF_NODE_SPACE_FOR_CELLS: 4082", "LEAF_NODE_MAX_CELLS: 13", "db > ", ])
现在,无论何时只要我们预先将光标移到叶节点的末尾,就可以检查叶节点是否具有同级。如果有,就跳到这个节点。否则,我们就在表的末尾。
@@ -428,7 +432,15 @@ void cursor_advance(Cursor* cursor) { cursor->cell_num += 1; if (cursor->cell_num >= (*leaf_node_num_cells(node))) { - cursor->end_of_table = true; + /* Advance to next leaf node */ + uint32_t next_page_num = *leaf_node_next_leaf(node); + if (next_page_num == 0) { + /* This was rightmost leaf */ + cursor->end_of_table = true; + } else { + cursor->page_num = next_page_num; + cursor->cell_num = 0; + } } }
做了这些变更,程序可以打印15行了
db > select
(1, user1, person1@example.com )
(2, user2, person2@example.com )
(3, user3, person3@example.com )
(4, user4, person4@example.com )
(5, user5, person5@example.com )
(6, user6, person6@example.com )
(7, user7, person7@example.com )
(8, user8, person8@example.com )
(9, user9, person9@example.com )
(10, user10, person10@example.com )
(11, user11, person11@example.com )
(12, user12, person12@example.com )
(13, user13, person13@example.com )
(1919251317, 14, on14@example.com )
(15, user15, person15@example.com )
Executed.
db >
貌似有一行有问题:
(1919251317, 14, on14@example.com)
经过一段时间排错,我发现问题存在于我们拆分叶子节点:
@@ -676,7 +690,9 @@ void leaf_node_split_and_insert(Cursor* cursor, uint32_t key, Row* value) { void* destination = leaf_node_cell(destination_node, index_within_node); if (i == cursor->cell_num) { - serialize_row(value, destination); + serialize_row(value, + leaf_node_value(destination_node, index_within_node)); + *leaf_node_key(destination_node, index_within_node) = key; } else if (i > cursor->cell_num) { memcpy(destination, leaf_node_cell(old_node, i - 1), LEAF_NODE_CELL_SIZE); } else {
回忆一下,叶子节点的每个单元格包含先是键,然后跟着值
我们之前把行(值)写入单元格的开始,那里也是键所在的位置。这意味着用户名的一部分侵入了ID的位置。解决这个问题以后,所有行都被如愿打印出来:
db > select (1, user1, person1@example.com) (2, user2, person2@example.com) (3, user3, person3@example.com) (4, user4, person4@example.com) (5, user5, person5@example.com) (6, user6, person6@example.com) (7, user7, person7@example.com) (8, user8, person8@example.com) (9, user9, person9@example.com) (10, user10, person10@example.com) (11, user11, person11@example.com) (12, user12, person12@example.com) (13, user13, person13@example.com) (14, user14, person14@example.com) (15, user15, person15@example.com) Executed. db >
面对一个接一个的错误,我们正在努力向前。
原文链接: Part 12 - Scanning a Multi-Level B-Tree (翻译:吴世曦)
以上所述就是小编给大家介绍的《一起做个简单的数据库(十二):扫描多级B树》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 关系型数据库全表扫描分片详解
- 智能化扫描场景分析—精细化扫描SQL注入漏洞
- 漏洞扫描“全覆盖”法则 | 被动扫描如何在资产发现中发挥作用?
- 开源扫描仪的工具箱:安全行业从业人员自研开源扫描器合集
- MySQL -- 全表扫描
- 漏洞扫描
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。