Flask 结合 Highcharts 实现动态渲染图表

栏目: IT技术 · 发布时间: 4年前

Flask 结合 Highcharts 实现动态渲染图表

最近动态图表可以说火爆全网,我们当然可以通过很多第三方 工具 来实现该功能,既方便又美观。 可是作为折腾不止的我们来说,有没有办法自己手动实现一个简易版的呢,答案当然是肯定的,今天我们就先来看一看如何基于 highcharts 完成上面的需求。

我们先来看看最终的效果

动态曲线图

动态条形图

看起来效果还是不错的,下面我们就一起来看看具体的实现吧。

Highcharts 简介

Highcharts 系列软件包含 Highcharts JS,Highstock JS,Highmaps JS 共三款软件,均为纯 JavaScript 编写的 HTML5 图表库,是一个非常完善的图表库。我们可能对于 ECharts 比较熟悉,而 Highcharts 则是一个可以与之比肩的项目。

文档

https://www.highcharts.com.cn/docs

API 文档

https://api.highcharts.com.cn/highcharts

Highcharts 有着非常完善的文档资料,且其 API 也更为丰富,这就大大降低了我们实现功能的难度。

今天我们要用到的功能主要有两个,分别是 series 的 addPoint 和 数据点(Point)的 update

addPoint

Flask 结合 Highcharts 实现动态渲染图表

可以看到,addPoint 函数可以在图表渲染完成之后,再进行新增点的操作,通过该函数,我们可以完成曲线图的动态展示效果。

update

Flask 结合 Highcharts 实现动态渲染图表

update 函数可以不断的更新数据点,从而实现条形图的变化效果。

动态曲线图

我们创建一个 js 文件,就命名为 a.js 吧,然后先定义两个全局变量,并通过 ajax 来获取后台数据

var chart = null; // 定义全局变量
var data = {};
$(document).ready(function () {
    $.get({
        url: '/get_data/',
        'success': function (point) {
            data = point;
        },
    });
    chart = chartfunc();
    chart.credits.update({
                text: 'Power by zhouluobo',
                href: 'https://www.luobodazahui.top/',
            });
    return data;
});

而上面函数中的函数 chartfunc 就是具体的图表配置信息,如下

function chartfunc(){
    chart = Highcharts.chart('container', {
        chart: {
            type: 'spline',
        },
        title: {
            text: '新型冠状病毒肺炎走势'
        },
        xAxis: {
            type: 'category',
        },
        yAxis: {
            minPadding: 0.2,
            maxPadding: 0.2,
            title: {
                text: '确诊人数',
                margin: 80
            }
        },
        series: [{
            name: '每日新增',
            data: []
        },
            {
                name: '累计确诊',
                data: []
            }]
    });
    return chart;
}

图表的配置信息都是最为基本的,根据官方文档完全可以搞定。

接下来,我们编写新增数据点的函数

$('#button').click(function () {
    var req_data = data;
    //具体的参数详见:https://api.hcharts.cn/highcharts#Series.addPoint
    var index=0;
    var handler = setInterval(function () {
        funt();
    },500);
    function funt() {
        if(index<req_data['today'].length){
        index++;
        if(index>=req_data['today'].length){
            clearInterval(handler); //关闭定时
        }
        chart.series[0].addPoint(req_data['today'][index]);
        chart.series[1].addPoint(req_data['total'][index]);
    }
    }
});

我们在按钮 button 上绑定了 click 事件,在事件中,我们根据后台数据的长度来决定新增数据点的数量。这样,每隔500毫秒,就会新增一个数据点,从而得到动态曲线图的效果。

动态条形图

动态条形图其实也是类似的,在 b.js 文件中,前两段代码一样,对于动态更新数据部分,我们采用 update 函数来实现

$('#button').click(function () {
    var req_data = data;
    var index=0;
    var handler = setInterval(function () {
        funt();
    },500);
    function funt() {
        if(index<req_data['total'].length){
        if(index>=req_data['total'].length){
            clearInterval(handler); //关闭定时
        }
        chart.series[0].data[0].update({
            y: req_data['today'][index]['y']
        });
        chart.series[1].data[0].update({
            y: req_data['total'][index]['y']
        });
        index++;
    }
    }
});

下面就是 Flask 和 数据获取的代码了

Flask 与数据获取

我们先定义好路由

from flask import Flask, render_template,jsonify

app = Flask(__name__)


@app.route('/')
def index():
    return render_template('index.html')


@app.route('/bar/')
def bar_chart():
    return render_template('bar.html')

接下来,还是通过如下接口来获取疫情数据

https://c.m.163.com/ug/api/wuhan/app/data/list-total

这个接口在前面的文章中已经讲解过了,这里直接给出解析代码

import requests


@app.route('/get_data/')
def get_data():
    total_list = []
    today_list = []
    ncov_data = {}
    headers = {
        'user-agent': '',
        'accept': ''
    }
    url = 'https://c.m.163.com/ug/api/wuhan/app/data/list-total'
    res = requests.get(url, headers=headers)
    data = res.json()['data']['chinaDayList']
    for i in data:
        date = i['date']
        today = i['today']['confirm']
        total = i['total']['confirm']
        today_list.append({'name': date, 'y': today})
        total_list.append({'name': date, 'y': total})
    ncov_data['today'] = today_list
    ncov_data['total'] = total_list
    return jsonify(ncov_data)

最后我们来看看 HTML 文件的代码,其实就是引入 jquery 和 highcharts,然后再创建一个图表容器即可

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Spline Chart</title>
    <!-- 引入 jquery.js -->
    <script src="https://cdn.staticfile.org/jquery/3.4.1/jquery.min.js"></script>
    <!-- 引入 highcharts.js -->
    <script src="http://cdn.highcharts.com.cn/highcharts/highcharts.js"></script>


</head>
<body>

<!-- 图表容器 DOM -->
<div id="container"></div>
<button id="button">START</button>
<script src="/static/a.js"></script>
</body>
</html>

至此,我们简易版的动态图表就制作完成了,感兴趣的你要不要来尝试一下呢

公众号后台回复“ 动态图表 ”获取完整代码哦

近期文章

Python核心技术与实战

Python全栈-60天精通之路

Python网络爬虫与文本数据分析

Python数据分析相关学习资源汇总帖

漂亮~pandas可以无缝衔接Bokeh

综述:文本分析在市场营销研究中的应用

Lazy Prices公司年报内容变动碰上股价偷懒

python 帮你生产指定内容的word文档

2020年B站跨年晚会弹幕内容分析

YelpDaset: 酒店管理类数据集10+G

NRC词语情绪词典和词语色彩词典

Loughran&McDonald金融文本情感分析库

Flask 结合 Highcharts 实现动态渲染图表

公众号后台回复“ 动态图表 ”获取完整代码哦


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

网页艺术设计

网页艺术设计

彭钢 / 高等教育出版社 / 2006-9 / 39.00元

《网页艺术设计》将软件技术与艺术理论进行整合,注重知识性与研究性、实践性与理论性、系统性与逻辑性,全面介绍网页艺术设计的基础知识与基本实践技能,既培养学习者的网页技术应用能力,又培养学习者的艺术审美、艺术创新和研究性学习能力,使学习者在有效的课时内学习和掌握网页艺术设计的理论与实践。 《网页艺术设计》的特点是具有完整的知识结构、合理的教学设计以及立体化的教学资源。教材共分为8章,包括网页艺术......一起来看看 《网页艺术设计》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具