对标Pytorch,清华团队推出自研AI框架“计图”

栏目: IT技术 · 发布时间: 4年前

内容简介:「AI技术生态论」 人物访谈栏目是CSDN发起的百万人学AI倡议下的重要组成部分。通过对AI生态专家、创业者、行业KOL的访谈,反映其对于行业的思考、未来趋势的判断、技术的实践,以及成长的经历。2020年,CSDN将对1000+人物进行系列访谈,勾勒出AI生态最具影响力人物图谱及AI产业全景图。

对标Pytorch,清华团队推出自研AI框架“计图”

「AI技术生态论」 人物访谈栏目是CSDN发起的百万人学AI倡议下的重要组成部分。通过对AI生态专家、创业者、行业KOL的访谈,反映其对于行业的思考、未来趋势的判断、技术的实践,以及成长的经历。

2020年,CSDN将对1000+人物进行系列访谈,勾勒出AI生态最具影响力人物图谱及AI产业全景图。 本文为 「AI技术生态论」系列访谈第3期。

作者 | Just

出品 | AI科技大本营(ID:rgznai100)

在机器学习框架领域,Pytorch、TensorFlow已分别成为目前学界和业界使用最广泛的两大实力玩家,而紧随其后的Keras、Caffe/Caffe2、MXNet等框架也因为自身的独特性受到相应开发者的喜爱。 

如今,AI开源框架之争再添新入局者。

如你所知,随着深度学习新技术的出现,任务复杂度不断提高,由于架构设计和不断扩充等原因,导致系统复杂,架构优化和移植变得困难,新模型的实际性能还有待提升。

一支清华大学团队决定研发更加灵活高效的深度学习框架。他们于近日宣布开源Jittor(计图),采用元算子融合和动态编译技术,深度优化内存,有效提升了系统的运行性能和通用性,确保实现和优化分离,大幅提升应用开发的灵活性、可拓展性和可移植性。

Github地址:

https://github.com/Jittor/Jittor

对标Pytorch,清华团队推出自研AI框架“计图”

Jittor的研发团队是清华大学计算机系的图形学实验室,负责人现为胡事民教授,长期从事可视媒体智能处理的研究。2006年-2015年间,实验室得到两期国家973计划项目的资助,在可视媒体的认知计算、机器学习、几何计算、智能算法等方面开展研究。

2009年起,实验室开展系统软件研究,逐步布局AI平台的研发。期间,实验室奠定了在图形图像应用、机器学习算法和底层系统软件三大优势,2018年,在胡事民教授带领下,以梁盾、杨国烨、杨国炜和周文洋等一批博士生为主力的团队开始搭建Jittor平台。Jittor团队核心开发成员梁盾告诉AI科技大本营(ID:rgznai100),2019年底他们完成了Jittor的基本功能,随后经过内部测试,于3月20日正式对外发布并开源。

作为一个采用元算子表达神经网络计算单元、完全基于动态编译(Just-in-Time)的深度学习框架,Jittor在三大新的设计理念下进行开发:

1.易用且可定制:用户只需要数行代码,就可定义新的算子和模型,在易用的同时,不丧失任何可定制性。

深度学习采用的卷积神经网络是由算子(Operator)组成的一个计算网络,当前深度学习框架有多达2000种算子。Jittor将算子运算进一步分解,形成了更加底层的三类20余种元算子闭包,目前神经网络常用算子均可以使用元算子的组合进行表达。  

什么是元算子?梁盾解释,元算子是Jittor的基本算子,主要包括三类:重索引算子(如填补、切分等),是一种一对多的关系;重索引化简算子(如累乘、累加等),是一种多对一的关系;元素级算子(如常见的元素级加减乘除等),是一种多对多的关系。

常见的神经网络算子,如卷积、池化、批归一化等操作可由元算子组合表达。元算子的提出主要是为了适应神经网络算子增长的需求,使得新算子的优化可以分解为元算子的融合和优化,避免单独对新算子优化,确保实现与优化的分离,提升可扩展性。

对标Pytorch,清华团队推出自研AI框架“计图” Jittor通过元算子融合实现深度神经网络模型

2.实现与优化分离:用户可以通过前端接口专注于实现,而实现自动被后端优化。从而提升前端代码的可读性,以及后端优化的鲁棒性和可重用性。

3.所有都是即时的:Jittor的所有代码都是即时编译并且运行,包括Jittor本身。用户可以随时对Jittor的所有代码进行修改,并且动态运行。

面向未来深度学习框架的发展趋势,Jittor利用元算子组合表达的优势,提出统一计算图进行优化,并从底层开始设计了一个全新的动态编译架构。

Jittor团队称,该架构支持多种编译器,确保实现和优化分离,大幅提升了应用开发灵活性、可拓展性和可移植性,与其他主流框架相比,具有多项先进特性 。     对标Pytorch,清华团队推出自研AI框架“计图”

这些领先的特性背后具体如何体现?

梁盾介绍,基于元算子组合表达神经网络的优势,Jittor提出统一计算图,融合静态计算图和动态计算图,提供高性能的计算:统一管理前向反向计算图,自动支持任意高阶导数的计算;统一调度CPU和GPU内存,支持超大模型的训练;统一同步异步运行接口,使得数据读取、内存拷贝、模型计算可以同时进行;统一管理多次迭代的计算图,实现跨迭代的融合优化。

基于此,Jittor团队在平台实现了ResNet、VGG、SSD、DeepLab、LSGAN等多个网络模型,根据他们提供的数据,与Pytorch相比,Jittor的推理和训练速度达到10%-50%的性能提升。

对标Pytorch,清华团队推出自研AI框架“计图”

梁盾表示,Jittor在性能上的提升,主要得益于Jittor提出的元算子融合和统一计算图,优化计算,节省计算资源,提升访存效率。同时,Jittor设计的全新编译架构将元算子动态编译成高性能的C++/CUDA代码,并进一步通过与LLVM兼容的优化编译遍(complier pass),生成对计算设备友好的可执行代码。  

无论是提到先进特性还是性能提升,从Jittor核心开发团队的官方口径,他们无疑要对标的是业内最主流的深度学习框架Pytorch。

Jittor开源消息发布后,开发者们在社交媒体平台上对其满是赞誉,不过要与Pytorch竞争,显然还有很长的路要走。

“中国作为人工智能产业发展和应用的最大市场,我们应该在人工智能生态的全产业链上占有一席之地。”

从国家科技战略层面,梁盾对AI科技大本营称,我国目前深度学习研究和应用主要依赖于国外平台,的确面临着卡脖子的风险,所以一些国内的IT企业也推出了自己的平台,希望Jittor和国内同行一起努力,为中国人工智能产业发展贡献一份力量。

最后,你怎么看Jittor?AI科技大本营将邀请业务专家做进一步解读,也欢迎在留言区发表你的观点。

【end】

CSDN全新人物专栏重磅上线   

对标Pytorch,清华团队推出自研AI框架“计图”   

PS:今日福利

同样作为“ 百万人学AI ”的重要组成部分,2020 AIProCon 开发者万人大会将于 6月26日 通过线上直播形式,让 开发者们一站式学习了解当下 AI 的前沿技术研究、核心技术与应用以及企业案例的实践经验,同时还可以在线参加精彩多样的开发者沙龙与编程项目。参与前瞻系列活动、在线直播互动,不仅可以与上万名开发者们一起交流,还有机 赢取直播专属好礼 ,与技术大咖连麦。

评论区留言入选,可获得价值 299元的 「2020 AI开发者万人大会」在线直播门票 一张。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

The Black Box Society

The Black Box Society

Frank Pasquale / Harvard University Press / 2015-1-5 / USD 35.00

Every day, corporations are connecting the dots about our personal behavior—silently scrutinizing clues left behind by our work habits and Internet use. The data compiled and portraits created are inc......一起来看看 《The Black Box Society》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

SHA 加密
SHA 加密

SHA 加密工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具