Statistical Decision Theory

栏目: IT技术 · 发布时间: 5年前

Statistical Decision Theory

In this post, we will discuss some theory that provides the framework for developing machine learning models.

Let’s get started!

If we consider a real valued random input vector, X , and a real valued random output vector, Y , the goal is to find a function f ( X ) for predicting the value of Y. This requires a loss function, L ( Y , f ( X )). This function allows us to penalize errors in predictions. One example of a commonly used loss function is the square error losss:

The loss function is the squared difference between true outcome values and our predictions. If f ( X ) = Y , which means our predictions equal true outcome values, our loss function is equal to zero. So we’d like to find a way to choose a function f ( X ) that gives us values as close to Y as possible.

Given our loss function, we have a critereon for selecting f ( X ). We can calculate the expected squared prediction error by integrating the loss function over x and y :

Where P( X , Y ) is the joint probability distribution in input and output. We can then condition on X and calculate the expected squared prediction error as follows:

We can then minimize this expect squared prediction error point wise, by finding the values, c , which minimize the error given X :

The solution to this is:

Which is the conditional expectation of Y , given X = x. Put another way, the regression function gives the conditional mean of Y, given our knowledge of X. Interestingly, the k -nearest neighbors method is a direct attempt at implementing this method from training data. With nearest neighbors, for each x , we can ask for the average of the y ’s where the input, x , equals a specific value. Our estimator for Y can then be written as:

Where we are taking the average over sample data and using the result to estimate the expected value. We are also conditioning on a region with k neighbors closest to the target point. As the sample size gets larger, the points in the neighborhood are likely to be close to x . Additionally, as the number of neighbors, k , gets larger the mean becomes more stable.

If you’re interested in learning more, Elements of Statistical Learning , by Trevor Hastie, is a great resource. Thank you for reading!


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

反欺骗的艺术

反欺骗的艺术

(美) 米特尼克(Mitnick, K. D.) / 潘爱民 / 清华大学出版社 / 2014-7-1 / 49.80元

凯文•米特尼克(Kevin D. Mitnick)曾经是历史上最令FBI头痛的计算机顽徒之一,现在他已经完成了大量的文章、图书、影片和记录文件。自从2000年从联邦监狱中获释以来,米特尼克改变了他的生活方式,成了全球广受欢迎的计算机安全专家之一。在他的首部将功补过的作品中,这位全世界最著名的黑客为“放下屠刀,立地成佛”这句佛语赋予了新的含义。 在《反欺骗的艺术——世界传奇黑客的经历分享》中,......一起来看看 《反欺骗的艺术》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

html转js在线工具
html转js在线工具

html转js在线工具