Illustrated Jq Tutorial

栏目: IT技术 · 发布时间: 5年前

Illustrated jq tutorial

The concept of pipes

Unix pipelines were invented in 1973 by Douglas McIlroy as a novel way of stringing together programs, where the output of one program is the input of the next one; It's a way of creating a new program out of combining basic building blocks, McIlroy describes it by analogy as 'screwing together data streams like a garden hose' . This approach quickly became the UNIX philosophy of programming described by McIlroy as follows: 'Write programs that do one thing and do it well. Write programs to work together. Write programs that handle text streams, because that is a universal interface.' Lets say you want to know what are the most common words occurring within a text, the following pipeline will order the words of a text by frequency of usage:
<a href="http://man7.org/linux/man-pages/man1/cat.1.html">cat</a> README.md  | <a href="http://man7.org/linux/man-pages/man1/tr.1.html">tr</a> " " "\n" | <a href="http://man7.org/linux/man-pages/man1/tr.1.html">tr</a>  -d '[:punct:]'  | <a href="http://man7.org/linux/man-pages/man1/sort.1.html">sort</a>   | <a href="http://man7.org/linux/man-pages/man1/uniq.1.html">uniq</a>  -c | sort -n -k 1
This example is a bit like functional programming: in each step of the pipeline the output depends only on the input received via the preceding pipe, each step acts on that text input only and produces its output without writing any files, that is without side effects.

jq - a tool for manipulating structured data

jq is a very versatile tool for working with structured information in json format, the command syntax of jq is also structured by means of a processing pipeline, similar to that of a unix shell, again each processing step acts as a filter/modifier of the input received from the preceding stage. Again on might look at each of these stages as functions in a functional program. This tutorial tries to explain jq in terms of example pipelines; each example comes with links that show you the intermediate results for each stage of the processing pipeline; i think this makes it easier to understand each of the building blocks involved. You can click either on any one of the commands to show the command and how it transforms the input json structure into the output json, each pipe symbol is also a link that will show you the information that flows through it. The html for this tutorial is generated by this script

The tutorial

Get a single scalar values

cat s1.json | jq ' .spec.replicas '

Get a single scalar values (different form, as a pipeline)

cat s1.json | jq ' .spec | .replicas '

Get two scalar values

cat s1.json | jq ' .spec.replicas, .kind '

Get two scalar values and concatenate/format them into a single string

cat s1.json | jq ' "replicas: " + (.spec.replicas | tostring) + " kind: " + .kind '

Select an object from an array of object based on one of the names

cat dep.json | jq ' .status.conditions | map(select(.type == "Progressing")) '

Select a single key value pair from a json object

cat ann.json | jq ' .metadata.annotations | to_entries | map(select(.key == "label1")) | from_entries '

Select two key value pairs from a json object

cat ann.json | jq ' .metadata.annotations | to_entries | map(select(.key == "label1" or .key == "label2")) | from_entries '

Select two key value pairs from a json object (second version)

cat ann.json | jq ' .metadata.annotations | to_entries | map(select(.key == ("label1", "label2"))) | from_entries '

Select all key value pairs from a json object where the name contains substring "label"

cat ann.json | jq ' .metadata.annotations | to_entries | map(select(.key | contains("label"))) | from_entries '

Select all key value pairs from a json object where the name matches the regular expression label[1-9]

cat ann.json | jq ' .metadata.annotations | to_entries | map(select(.key | test("label[1-9]"))) | from_entries '

Add another key value pair to a json object

cat ann.json | jq ' .metadata.annotations += { "label4" : "two" } '

Set all values in a json object

cat ann.json | jq ' .metadata.annotations | to_entries | map_values(.value="override-value") | from_entries '


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

信息论基础

信息论基础

Thomas M.Cover、Joy A.Thomas / 清华大学出版社 / 2003-11-1 / 65.00元

《国际知名大学原版教材•信息论基础》系统介绍了信息论基本原理及其在通信理论、统计学、计算机科学、概率论以及投资理论等领域的应用。作者以循序渐进的方式,介绍了信息量的基本定义、相对熵、互信息以及他们如何自然地用来解决数据压缩、信道容量、信息率失真、统计假设、网络信息流等问题。一起来看看 《信息论基础》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

在线进制转换器
在线进制转换器

各进制数互转换器

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器