内容简介:DPCNN结构究竟是多么牛逼的网络呢?我们下面来窥探一下模型的芳容。
[导读]
ACL2017年中,腾讯AI-lab提出了Deep Pyramid Convolutional Neural Networks for Text Categorization(DPCNN)。论文中提出了一种基于word-level级别的网络-DPCNN,由于上一篇文章介绍的TextCNN 不能通过卷积获得文本的长距离依赖关系,而论文中 DPCNN通过不断加深网络,可以抽取长距离的文本依赖关系 。实验证明在不增加太多计算成本的情况下,增加网络深度就可以获得最佳的准确率。
DPCNN结构
究竟是多么牛逼的网络呢?我们下面来窥探一下模型的芳容。
DPCNN结构细节
模型是如何通过加深网络来捕捉文本的长距离依赖关系的呢? 下面我们来一一道来。为了更加简单的解释DPCNN,这里我先不解释是什么是Region embedding,我们先把它当作word embedding。
等长卷积
首先交代一下卷积的的一个基本概念。一般常用的卷积有以下三类:
假设输入的序列长度为n,卷积核大小为m,步长(stride)为s,输入序列两端各填补p个零(zero padding),那么该卷积层的输出序列为(n-m+2p)/s+1。
(1) 窄卷积(narrow convolution): 步长s=1,两端不补零,即p=0,卷积后输出长度为n-m+1。
(2) 宽卷积(wide onvolution) : 步长s=1,两端补零p=m-1,卷积后输出长度 n+m-1。
(3) 等长卷积(equal-width convolution): 步长s=1,两端补零p=(m-1)/2,卷积后输出长度为n。如下图所示,左右两端同时补零p=1,s=3。
池化
那么DPCNN是如何捕捉长距离依赖的呢?这里我直接引用文章的小标题—— Downsampling with the number of feature maps fixed。
作者选择了适当的两层等长卷积来提高词位embedding的表示的丰富性。然后接下来就开始 Downsampling (池化)。再每一个卷积块(两层的等长卷积)后,使用一个size=3和stride=2进行maxpooling进行池化。 序列的长度就被压缩成了原来的一半。其能够感知到的文本片段就比之前长了一倍 。
例如之前是只能感知3个词位长度的信息,经过1/2池化层后就能感知6个词位长度的信息啦,这时把1/2池化层和size=3的卷积层组合起来如图所示。
固定feature maps(filters)的数量
为什么要固定 feature maps 的数量呢 ? 许多模型每当执行池化操作时,增加 feature maps 的数量,导致总计算复杂度是深度的函数。 与此相反,作者对feature map的数量进行了修正,他们实验发现增加feature map的数量只会大大增加计算时间,而没有提高精度。
另外,夕小瑶小姐姐在知乎也详细的解释了为什么要固定 feature maps 的数量。有兴趣的可以去知乎搜一搜,讲的非常透彻。
固定了feature map的数量,每当使用一个 size=3 和 stride=2 进行 maxpooling 进行池化时,每个卷积层的计算时间减半(数据大小减半),从而形成一个金字塔。
这就是论文题目所谓的 Pyramid 。
好啦,看似问题都解决了,目标成功达成。剩下的我们就只需要重复的进行等长卷积+等长卷积+使用一个size=3和stride=2进行maxpooling进行池化就可以啦,DPCNN就可以捕捉文本的长距离依赖啦!
Shortcut connections with pre-activation
但是!如果问题真的这么简单的话,深度学习就一下子少了超级多的难点了。
(1) 初始化CNN的时,往往各层权重都初始化为很小的值,这导致了最开始的网络中,后续几乎每层的输入都是接近0,这时的网络输出没有意义;
(2) 小权重阻碍了梯度的传播, 使得网络的初始训练阶段往往要迭代好久才能启动;
(3) 就算网络启动完成,由于深度网络中仿射矩阵(每两层间的连接边)近似连乘,训练过程中网络也非常容易发生梯度爆炸或弥散问题。
当然,上述这几点问题本质就是梯度弥散问题。那么如何解决深度CNN网络的梯度弥散问题呢?当然是膜一下何恺明大神,然后把ResNet的精华拿来用啦! ResNet中提出的shortcut-connection/ skip-connection/ residual-connection(残差连接)就是一种非常简单、合理、有效的解决方案。
类似地, 为了使深度网络的训练成为可能,作者为了恒等映射,所以使用加法进行shortcut connections ,即 z+f(z) ,其中 f 用的是两层的等长卷积。这样就可以极大的缓解了梯度消失问题。
另外,作者也使用了 pre-activation ,这个最初在何凯明的“Identity Mappings in Deep Residual Networks上提及,有兴趣的大家可以看看这个的原理。直观上,这种“线性”简化了深度网络的训练,类似于LSTM中constant error carousels的作用。而且实验证明 pre-activation优于post-activation。
整体来说,巧妙的结构设计,使得这个模型 不需要为了维度匹配问题而担忧。
Region embedding
同时DPCNN的底层貌似保持了跟TextCNN一样的结构,这里作者 将TextCNN的包含多尺寸卷积滤波器的卷积层的卷积结果称之为Region embedding ,意思就是对一个文本区域/片段(比如3gram)进行一组卷积操作后生成的embedding。
另外,作者为了进一步提高性能,还使用了 tv-embedding (two-views embedding)进一步提高DPCNN的accuracy 。
上述介绍了DPCNN的整体架构,可见DPCNN的架构之精美。本文是在原始论文以及知乎上的一篇文章的基础上进行整理。本文可能也会有很多错误,如果有错误,欢迎大家指出来!建议大家为了更好的理解DPCNN ,看一下原始论文和参考里面的知乎。
用Keras实现DPCNN网络
这里参考了一下kaggle的代码,模型一共用了七层,模型的参数与论文不太相同。这里滤波器通道个数为64(论文中为256),具体的参数可以参考下面的代码,部分我写了注释。
def CNN(x): block = Conv1D(filter_nr, kernel_size=filter_size, padding=same, activation=linear, kernel_regularizer=conv_kern_reg, bias_regularizer=conv_bias_reg)(x) block = BatchNormalization()(block) block = PReLU()(block) block = Conv1D(filter_nr, kernel_size=filter_size, padding=same, activation=linear, kernel_regularizer=conv_kern_reg, bias_regularizer=conv_bias_reg)(block) block = BatchNormalization()(block) block = PReLU()(block) return block def DPCNN(): filter_nr = 64 #滤波器通道个数 filter_size = 3 #卷积核 max_pool_size = 3 #池化层的pooling_size max_pool_strides = 2 #池化层的步长 dense_nr = 256 #全连接层 spatial_dropout = 0.2 dense_dropout = 0.5 train_embed = False conv_kern_reg = regularizers.l2(0.00001) conv_bias_reg = regularizers.l2(0.00001) comment = Input(shape=(maxlen,)) emb_comment = Embedding(max_features, embed_size, weights=[embedding_matrix], trainable=train_embed)(comment) emb_comment = SpatialDropout1D(spatial_dropout)(emb_comment) #region embedding层 resize_emb = Conv1D(filter_nr, kernel_size=1, padding=same, activation=linear, kernel_regularizer=conv_kern_reg, bias_regularizer=conv_bias_reg)(emb_comment) resize_emb = PReLU()(resize_emb) #第一层 block1 = CNN(emb_comment) block1_output = add([block1, resize_emb]) block1_output = MaxPooling1D(pool_size=max_pool_size, strides=max_pool_strides)(block1_output) #第二层 block2 = CNN(block1_output) block2_output = add([block2, block1_output]) block2_output = MaxPooling1D(pool_size=max_pool_size, strides=max_pool_strides)(block2_output) #第三层 block3 = CNN(block2_output) block3_output = add([block3, block2_output]) block3_output = MaxPooling1D(pool_size=max_pool_size, strides=max_pool_strides)(block3_output) #第四层 block4 = CNN(block3_output) block4_output = add([block4, block3_output]) block4_output = MaxPooling1D(pool_size=max_pool_size, strides=max_pool_strides)(block4_output) #第五层 block5 = CNN(block4_output) block5_output = add([block5, block4_output]) block5_output = MaxPooling1D(pool_size=max_pool_size, strides=max_pool_strides)(block5_output) #第六层 block6 = CNN(block5_output) block6_output = add([block6, block5_output]) block6_output = MaxPooling1D(pool_size=max_pool_size, strides=max_pool_strides)(block6_output) #第七层 block7 = CNN(block6_output) block7_output = add([block7, block6_output]) output = GlobalMaxPooling1D()(block7_output) #全连接层 output = Dense(dense_nr, activation=linear)(output) output = BatchNormalization()(output) output = PReLU()(output) output = Dropout(dense_dropout)(output) output = Dense(6, activation=sigmoid)(output) model = Model(comment, output) model.summary() model.compile(loss=binary_crossentropy, optimizer=optimizers.Adam(), metrics=[accuracy]) return model
DPCNN实战
上面我们用keras实现了我们的DPCNN网络,这里我们借助kaggle的有毒评论文本分类竞赛来实战下我们的DPCNN网络。
具体地代码,大家可以去我的GitHub上面找到源码 :
https://github.com/hecongqing/TextClassification/blob/master/DPCNN.ipynb
参考:
https://ai.tencent.com/ailab/media/publications/ACL3-Brady.pdf
https://zhuanlan.zhihu.com/p/35457093
https://www.kaggle.com/michaelsnell/conv1d-dpcnn-in-keras
推荐阅读
10万元奖金语音识别赛进行中 | 自动化所博士生讲解业界主流 KALDI 基线模型
抛开模型,探究文本自动摘要的本质——ACL2019 论文佳作研读系列
关于AINLP
AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括文本摘要、智能问答、聊天机器人、机器翻译、自动生成、知识图谱、预训练模型、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLP君微信(id:AINLP2),备注工作/研究方向+加群目的。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 深度文本表征与深度文本聚类在小样本场景中的探索与实践
- 深度文本分类综述
- 文本分类和序列标注“深度”实践
- 深度学习文本分类工具 CoolNLTK 发布
- 深度学习在金融文本情感分类中的应用
- 腾讯AI Lab深度解读文本生成技术相关论文
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。