内容简介:DeepRobust is a pytorch adversarial library for attack and defense methods on images and graphs. List of including algorithms can be found inEnvironment & InstallationUsage
DeepRobust
DeepRobust is a pytorch adversarial library for attack and defense methods on images and graphs. List of including algorithms can be found in [Image Package] and [Graph Package] .
Environment & Installation
Usage
-
Image Attack and Defense
-
Graph Attack and Defense
For more details about attacks and defenses, you can read the following papers.
Adversarial Attacks and Defenses on Graphs: A Review and Empirical Study
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
Baisc Environment
python >= 3.6 pytorch >= 1.2.0
see setup.py
or requirements.txt
for more information.
Installation
git clone https://github.com/DSE-MSU/DeepRobust.git cd DeepRobust python setup.py install
Test Examples
python examples/graph/test_gcn_jaccard.py --dataset cora python examples/image/evaluation_attack
Usage
Image Attack and Defense
-
Train model
Example: Train a simple CNN model on MNIST dataset for 20 epoch on gpu.
import deeprobust.image.netmodels.train_model as trainmodel trainmodel.train('CNN', 'MNIST', 'cuda', 20)
Model would be saved in deeprobust/trained_models/.
-
Instantiated attack methods and defense methods.
Example: Generate adversary example with PGD attack.
from deeprobust.image.attack.pgd import PGD from deeprobust.image.config import attack_params import deeprobust.image.netmodels.resnet as resnet model = resnet.ResNet18().to('cuda') model.load_state_dict(torch.load("./trained_models/CIFAR10_ResNet18_epoch_50.pt")) model.eval() transform_val = transforms.Compose([transforms.ToTensor()]) test_loader = torch.utils.data.DataLoader( datasets.CIFAR10('deeprobust/image/data', train = False, download=True, transform = transform_val), batch_size = 10, shuffle=True) x, y = next(iter(test_loader)) x = x.to('cuda').float() adversary = PGD(model, device) Adv_img = adversary.generate(x, y, **attack_params['PGD_CIFAR10'])
Example: Train defense model.
from deeprobust.image.defense.pgdtraining import PGDtraining from deeprobust.image.config import defense_params from deeprobust.image.netmodels.CNN import Net import torch from torchvision import datasets, transforms model = Net() train_loader = torch.utils.data.DataLoader( datasets.MNIST('deeprobust/image/defense/data', train=True, download=True, transform=transforms.Compose([transforms.ToTensor()])), batch_size=100,shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('deeprobust/image/defense/data', train=False, transform=transforms.Compose([transforms.ToTensor()])), batch_size=1000,shuffle=True) defense = PGDtraining(model, 'cuda') defense.generate(train_loader, test_loader, **defense_params["PGDtraining_MNIST"])
More example code can be found in deeprobust/examples.
-
Use our evulation program to test attack algorithm against defense.
Example:
python -m deeprobust.image.evaluation_attack
Graph Attack and Defense
Attacking Graph Neural Networks
-
Load dataset
import torch import numpy as np from deeprobust.graph.data import Dataset from deeprobust.graph.defense import GCN from deeprobust.graph.global_attack import Metattack data = Dataset(root='/tmp/', name='cora', setting='nettack') adj, features, labels = data.adj, data.features, data.labels idx_train, idx_val, idx_test = data.idx_train, data.idx_val, data.idx_test idx_unlabeled = np.union1d(idx_val, idx_test)
-
Set up surrogate model
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") surrogate = GCN(nfeat=features.shape[1], nclass=labels.max().item()+1, nhid=16, with_relu=False, device=device) surrogate = surrogate.to(device) surrogate.fit(features, adj, labels, idx_train)
-
Set up attack model and generate perturbations
model = Metattack(model=surrogate, nnodes=adj.shape[0], feature_shape=features.shape, device=device) model = model.to(device) perturbations = int(0.05 * (adj.sum() // 2)) model.attack(features, adj, labels, idx_train, idx_unlabeled, perturbations, ll_constraint=False) modified_adj = model.modified_adj
For more details please refer to mettack.py
or run python examples/graph/test_mettack.py --dataset cora --ptb_rate 0.05
Defending Against Graph Attacks
-
Load dataset
import torch from deeprobust.graph.data import Dataset, PtbDataset from deeprobust.graph.defense import GCN, GCNJaccard import numpy as np np.random.seed(15) # load clean graph data = Dataset(root='/tmp/', name='cora', setting='nettack') adj, features, labels = data.adj, data.features, data.labels idx_train, idx_val, idx_test = data.idx_train, data.idx_val, data.idx_test # load pre-attacked graph by mettack perturbed_data = PtbDataset(root='/tmp/', name='cora') perturbed_adj = perturbed_data.adj
-
Test
# Set up defense model and test performance device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = GCNJaccard(nfeat=features.shape[1], nclass=labels.max()+1, nhid=16, device=device) model = model.to(device) model.fit(features, perturbed_adj, labels, idx_train) model.eval() output = model.test(idx_test) # Test on GCN model = GCN(nfeat=features.shape[1], nclass=labels.max()+1, nhid=16, device=device) model = model.to(device) model.fit(features, perturbed_adj, labels, idx_train) model.eval() output = model.test(idx_test)
For more details please refer to test_gcn_jaccard.py
or run python examples/graph/test_gcn_jaccard.py --dataset cora
Acknowledgement
Some of the algorithms are refer to paper authors' implementations. References can be found at the top of the file. Thanks to their outstanding works!
以上所述就是小编给大家介绍的《DeepRobust- Pytorch Library for adversarial attack and defense in deep learning》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
计算机程序设计艺术(第3卷)
Donald E.Knuth / 苏运霖 / 国防工业出版社 / 2002-9 / 98.00元
第3卷的头一次修订对经典计算机排序和查找技术做了最全面的考察。它扩充了第1卷对数据结构的处理,以将大小数据库和内外存储器一并考虑;遴选了精心核验的计算机方法,并对其效率做了定量分析。第3卷的突出特点是对“最优排序”一节的修订和对排列论与通用散列法的讨论。一起来看看 《计算机程序设计艺术(第3卷)》 这本书的介绍吧!