内容简介:golang AES加密函数的使用AES: Advanced Encryption Standard高阶加密标准,是用来代替 老的DES的。
golang AES加密函数的使用
- 什么是AES
AES: Advanced Encryption Standard
高阶加密标准,是用来代替 老的DES的。
AES加密算法的加密块必须是16字节(128bit),所以不足部分需要填充,常用的填充算法是PKCS7。
AES加密算法的key可以是16字节(AES128),或者24字节(AES192),或者是32字节(AES256)
- AES算法的具体实现种类
ECB:Electronic Codebook Book
CBC:Cipher Block Chaining:这是最常见的块加密实现
CTR:Counter
CFB:Cipher FeedBack
OFB:Output FeedBack
具体的差异我也没去弄明白,知道这么个意思,加密算法稍后差异。
- golang crypt库实现的加密函数
包括AES,CBC,CTR,OFB,CFB,GCM。
这其中GCM不需要加密块必须16字节长度,可以是任意长度,其他的都需要16字节对其,所以不足部分都需要补充。
package main
import (
"io"
"fmt"
"crypto/aes"
"crypto/cipher"
"crypto/rand"
)
func main() {
key := []byte("12345678901234567890123456789012") // 32 bytes long
plainText := []byte("123")
fmt.Printf("Original Text: [%s]\n",plainText)
cipherText, _ := AESEncrypt(key, plainText) // replace with corresponding encrypt implementation
decryptText, _ := AESDecrypt(key, cipherText)
fmt.Printf("AES Decrypted Text: [%s]\n", decryptText)
}
3.1 AES
func AESEncrypt(key []byte, data[]byte) ([]byte, error) {
data = pad(data, aes.BlockSize)
c, _ := aes.NewCipher(key)
out := make([]byte, len(data))
c.Encrypt(out, []byte(data))
return out, nil
}
func AESDecrypt(key []byte, data[]byte) ([]byte, error) {
c, _ := aes.NewCipher(key)
out := make([]byte, len(data))
c.Decrypt(out, data)
out, _ = unpad(out)
return out, nil
}
3.2 CBC
func CBCEncrypt(key []byte, data []byte) ([]byte, error) {
data = pad(data, aes.BlockSize)
block, _ := aes.NewCipher(key)
out := make([]byte, aes.BlockSize + len(data))
iv := out[:aes.BlockSize]
io.ReadFull(rand.Reader, iv)
mode := cipher.NewCBCEncrypter(block, iv)
mode.CryptBlocks(out[aes.BlockSize:], []byte(data))
return out, nil
}
func CBCDecrypt(key []byte, data []byte) ([]byte, error) {
block, _ := aes.NewCipher(key)
iv := data[:aes.BlockSize]
data = data[aes.BlockSize:]
if len(data) % aes.BlockSize != 0 {
return nil, fmt.Errorf("data is not a multiple of the block size")
}
out := make([]byte, len(data))
mode := cipher.NewCBCDecrypter(block, iv)
mode.CryptBlocks(out, data)
out, _ = unpad(out)
return out, nil
}
3.3 CTR
func CTREncrypt(key []byte, data[]byte) ([]byte, error) {
data = pad(data, aes.BlockSize)
block, _ := aes.NewCipher([]byte(key))
out := make([]byte, aes.BlockSize + len(data))
iv := out[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
return nil, err
}
stream := cipher.NewCTR(block, iv)
stream.XORKeyStream(out[aes.BlockSize:], data)
return out, nil
}
func CTRDecrypt(key []byte, data[]byte) ([]byte, error) {
block, _ := aes.NewCipher([]byte(key))
iv := data[:aes.BlockSize]
data = data[aes.BlockSize:]
if len(data) % aes.BlockSize != 0 {
return nil, fmt.Errorf("data is not a multiple of the block size")
}
out := make([]byte, len(data))
mode := cipher.NewCTR(block, iv)
mode.XORKeyStream(out, data)
out, _ = unpad(out)
return out, nil
}
3.4 OFB
func OFBEncrypt(key []byte, data[]byte) ([]byte, error) {
data = pad(data, aes.BlockSize)
block, _ := aes.NewCipher([]byte(key))
out := make([]byte, aes.BlockSize + len(data))
iv := out[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
return nil, err
}
stream := cipher.NewOFB(block, iv)
stream.XORKeyStream(out[aes.BlockSize:], data)
return out, nil
}
func OFBDecrypt(key []byte, data[]byte) ([]byte, error) {
block, _ := aes.NewCipher([]byte(key))
iv := data[:aes.BlockSize]
data = data[aes.BlockSize:]
if len(data) % aes.BlockSize != 0 {
return nil, fmt.Errorf("data is not a multiple of the block size")
}
out := make([]byte, len(data))
mode := cipher.NewOFB(block, iv)
mode.XORKeyStream(out, data)
out, _ = unpad(out)
return out, nil
}
3.5 CFB
func CFBEncrypt(key []byte, data[]byte) ([]byte, error) {
data = pad(data, aes.BlockSize)
block, _ := aes.NewCipher([]byte(key))
out := make([]byte, aes.BlockSize + len(data))
iv := out[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
return nil, err
}
stream := cipher.NewCFBEncrypter(block, iv)
stream.XORKeyStream(out[aes.BlockSize:], data)
return out, nil
}
func CFBDecrypt(key []byte, data[]byte) ([]byte, error) {
block, _ := aes.NewCipher([]byte(key))
iv := data[:aes.BlockSize]
data = data[aes.BlockSize:]
if len(data) % aes.BlockSize != 0 {
return nil, fmt.Errorf("data is not a multiple of the block size")
}
out := make([]byte, len(data))
mode := cipher.NewCFBDecrypter(block, iv)
mode.XORKeyStream(out, data)
out, _ = unpad(out)
return out, nil
}
3.6 GCM
GCM实现算法不需要pad。
func GCMEncrypt(key []byte, data[]byte) ([]byte, error) {
block, _ := aes.NewCipher([]byte(key))
aesgcm, _ := cipher.NewGCM(block)
nonce := make([]byte, aesgcm.NonceSize())
io.ReadFull(rand.Reader, nonce)
out := aesgcm.Seal(nonce, nonce, data, nil)
return out, nil
}
func GCMDecrypt(key []byte, data[]byte) ([]byte, error) {
block, _ := aes.NewCipher([]byte(key))
aesgcm, _ := cipher.NewGCM(block)
nonce, ciphertext := data[:aesgcm.NonceSize()], data[aesgcm.NonceSize():]
out, err := aesgcm.Open(nil, nonce, ciphertext, nil)
return out, nil
}
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 微软开源SEAL简单加密算法函数库
- python中使用加盐哈希函数加密密码
- 加密原理详解:对称式加密 VS 非对称式加密
- 编码、摘要和加密(三)——数据加密
- 聊聊对称加密与非对称加密
- 手机游戏加密之2d资源加密
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
运营其实很简单:互联网运营进阶之道
郑文博 / 人民邮电出版社 / 2018-2 / 49.80元
为了帮助从事运营或即将从事运营的广大读者更好、更快地了解运营、学习运营、入职运营,本书详细阐述运营对于用户、企业的帮助,同时以单个理论点 单个实战案例的方式详细分析了社群运营、活动运营、新媒体运营、内容运营、渠道运营、精细化运营、场景化运营、用户化运营、商业化运营等模块及运营工作、渠道整合、社群知识、渠道优化、SOP流程等细节,力求让读者在求职路上快速上手,在迷茫途中快速定位。 《运营其实很简单 ......一起来看看 《运营其实很简单:互联网运营进阶之道》 这本书的介绍吧!