Best polynomial approximation equal ripple error

栏目: IT技术 · 发布时间: 5年前

内容简介:The best polynomial approximation, in the sense of minimizing the maximum error, can be found by the Remez algorithm. I expected Mathematica to have a function implementing this algorithm, but apparently it does not have one. (But see update below.)It has

The best polynomial approximation, in the sense of minimizing the maximum error, can be found by the Remez algorithm. I expected Mathematica to have a function implementing this algorithm, but apparently it does not have one. (But see update below.)

It has a function named MiniMaxApproximation which sounds like Remez algorithm, and it’s close, but it’s not it.

To use this function you first have to load the FunctionApproximations package.

<< FunctionApproximations`

Then we can use it, for example, to find a polynomial approximation to e x on the interval [-1, 1].

MiniMaxApproximation[Exp[x], {x, {-1, 1}, 5, 0}]

This returns the polynomial

1.00003 + 0.999837 x + 0.499342 x^2 + 0.167274 x^3 + 0.0436463 x^4 + 
 0.00804051 x^5

And if we plot the error, the difference between e x and this polynomial, we see that we get a good fit.

Best polynomial approximation equal ripple error

But we know this isn’t optimal because there is a theorem that says the optimal approximation has equal ripple error. That is, the absolute value of the error at all its extrema should be the same. In the graph above, the error is quite a bit larger on the right end than on the left end.

Still, the error is not much larger than the smallest possible using 5th degree polynomials. And the error is about 10x smaller than using a Taylor series approximation.

Plot[Exp[x] - (1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120), {x, -1, 1}]

Best polynomial approximation equal ripple error

Update: Jason Merrill pointed out in a comment what I was missing. Turns out MiniMaxApproximation finds an approximation that minimizes relative error. Since e x doesn’t change that much over [-1, 1], the absolute error and relative error aren’t radically different. There is no option to minimize absolute error.

When you look at the approximation error divided by e x you get the ripples you’d expect.

Best polynomial approximation equal ripple error


以上所述就是小编给大家介绍的《Best polynomial approximation equal ripple error》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

汇编语言(第2版)

汇编语言(第2版)

王爽 / 清华大学出版社 / 2008-4 / 33.00元

《汇编语言(第2版)》是各种CPU提供的机器指令的助记符的集合,人们可以用汇编语言直接控制硬件系统进行工作。汇编语言是很多相关课程(如数据结构、操作系统、微机原理等)的重要基础。为了更好地引导、帮助读者学习汇编语言,作者以循序渐进的思想精心创作了《汇编语言(第2版)》。《汇编语言(第2版)》具有如下特点:采用了全新的结构对课程的内容进行组织,对知识进行最小化分割,为读者构造了循序渐进的学习线索;在......一起来看看 《汇编语言(第2版)》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器