Best polynomial approximation equal ripple error

栏目: IT技术 · 发布时间: 4年前

内容简介:The best polynomial approximation, in the sense of minimizing the maximum error, can be found by the Remez algorithm. I expected Mathematica to have a function implementing this algorithm, but apparently it does not have one. (But see update below.)It has

The best polynomial approximation, in the sense of minimizing the maximum error, can be found by the Remez algorithm. I expected Mathematica to have a function implementing this algorithm, but apparently it does not have one. (But see update below.)

It has a function named MiniMaxApproximation which sounds like Remez algorithm, and it’s close, but it’s not it.

To use this function you first have to load the FunctionApproximations package.

<< FunctionApproximations`

Then we can use it, for example, to find a polynomial approximation to e x on the interval [-1, 1].

MiniMaxApproximation[Exp[x], {x, {-1, 1}, 5, 0}]

This returns the polynomial

1.00003 + 0.999837 x + 0.499342 x^2 + 0.167274 x^3 + 0.0436463 x^4 + 
 0.00804051 x^5

And if we plot the error, the difference between e x and this polynomial, we see that we get a good fit.

Best polynomial approximation equal ripple error

But we know this isn’t optimal because there is a theorem that says the optimal approximation has equal ripple error. That is, the absolute value of the error at all its extrema should be the same. In the graph above, the error is quite a bit larger on the right end than on the left end.

Still, the error is not much larger than the smallest possible using 5th degree polynomials. And the error is about 10x smaller than using a Taylor series approximation.

Plot[Exp[x] - (1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120), {x, -1, 1}]

Best polynomial approximation equal ripple error

Update: Jason Merrill pointed out in a comment what I was missing. Turns out MiniMaxApproximation finds an approximation that minimizes relative error. Since e x doesn’t change that much over [-1, 1], the absolute error and relative error aren’t radically different. There is no option to minimize absolute error.

When you look at the approximation error divided by e x you get the ripples you’d expect.

Best polynomial approximation equal ripple error


以上所述就是小编给大家介绍的《Best polynomial approximation equal ripple error》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

谁排第一

谁排第一

Amy N. Langville、Carl D. Meyer / 郭斯羽 / 机械工业出版社 / 2014-6 / 49

《谁排第一?关于评价和排序的科学》是首个关于评分和排名科学的著作。它是搜索排序姊妹篇的第二本。本书主要内容有:排名概述、梅西法、科利法、基纳法、埃洛体系、马尔可夫法、攻防评分法、基于重新排序的排名方法、分差、用户偏好评分、处理平局、加入权重、“假如……会怎样”的问题与敏感性、排名聚合、比较排名的方法、数据等。 《谁排第一?关于评价和排序的科学》可作为数学、计算机、网络技术、管理学和数据科学等......一起来看看 《谁排第一》 这本书的介绍吧!

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具