Best polynomial approximation equal ripple error

栏目: IT技术 · 发布时间: 4年前

内容简介:The best polynomial approximation, in the sense of minimizing the maximum error, can be found by the Remez algorithm. I expected Mathematica to have a function implementing this algorithm, but apparently it does not have one. (But see update below.)It has

The best polynomial approximation, in the sense of minimizing the maximum error, can be found by the Remez algorithm. I expected Mathematica to have a function implementing this algorithm, but apparently it does not have one. (But see update below.)

It has a function named MiniMaxApproximation which sounds like Remez algorithm, and it’s close, but it’s not it.

To use this function you first have to load the FunctionApproximations package.

<< FunctionApproximations`

Then we can use it, for example, to find a polynomial approximation to e x on the interval [-1, 1].

MiniMaxApproximation[Exp[x], {x, {-1, 1}, 5, 0}]

This returns the polynomial

1.00003 + 0.999837 x + 0.499342 x^2 + 0.167274 x^3 + 0.0436463 x^4 + 
 0.00804051 x^5

And if we plot the error, the difference between e x and this polynomial, we see that we get a good fit.

Best polynomial approximation equal ripple error

But we know this isn’t optimal because there is a theorem that says the optimal approximation has equal ripple error. That is, the absolute value of the error at all its extrema should be the same. In the graph above, the error is quite a bit larger on the right end than on the left end.

Still, the error is not much larger than the smallest possible using 5th degree polynomials. And the error is about 10x smaller than using a Taylor series approximation.

Plot[Exp[x] - (1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120), {x, -1, 1}]

Best polynomial approximation equal ripple error

Update: Jason Merrill pointed out in a comment what I was missing. Turns out MiniMaxApproximation finds an approximation that minimizes relative error. Since e x doesn’t change that much over [-1, 1], the absolute error and relative error aren’t radically different. There is no option to minimize absolute error.

When you look at the approximation error divided by e x you get the ripples you’d expect.

Best polynomial approximation equal ripple error


以上所述就是小编给大家介绍的《Best polynomial approximation equal ripple error》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Java和Android开发学习指南(第二版)

Java和Android开发学习指南(第二版)

Budi Kurniawan / 李强 / 人民邮电出版社 / 2016-3 / 69.00元

本书是Java语言学习指南,特别针对使用Java进行Android应用程序开发展开了详细介绍。 全书共50章,分为两大部分。第1部分(第1章到第22章)主要介绍Java语言基础知识及其功能特性。第2部分(第23章到第50章)主要介绍如何有效地构建Android应用程序。 本书适合任何想要学习Java语言的读者阅读,特别适合想要成为Android应用程序开发人员的读者学习参考。一起来看看 《Java和Android开发学习指南(第二版)》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

SHA 加密
SHA 加密

SHA 加密工具