Best polynomial approximation equal ripple error

栏目: IT技术 · 发布时间: 4年前

内容简介:The best polynomial approximation, in the sense of minimizing the maximum error, can be found by the Remez algorithm. I expected Mathematica to have a function implementing this algorithm, but apparently it does not have one. (But see update below.)It has

The best polynomial approximation, in the sense of minimizing the maximum error, can be found by the Remez algorithm. I expected Mathematica to have a function implementing this algorithm, but apparently it does not have one. (But see update below.)

It has a function named MiniMaxApproximation which sounds like Remez algorithm, and it’s close, but it’s not it.

To use this function you first have to load the FunctionApproximations package.

<< FunctionApproximations`

Then we can use it, for example, to find a polynomial approximation to e x on the interval [-1, 1].

MiniMaxApproximation[Exp[x], {x, {-1, 1}, 5, 0}]

This returns the polynomial

1.00003 + 0.999837 x + 0.499342 x^2 + 0.167274 x^3 + 0.0436463 x^4 + 
 0.00804051 x^5

And if we plot the error, the difference between e x and this polynomial, we see that we get a good fit.

Best polynomial approximation equal ripple error

But we know this isn’t optimal because there is a theorem that says the optimal approximation has equal ripple error. That is, the absolute value of the error at all its extrema should be the same. In the graph above, the error is quite a bit larger on the right end than on the left end.

Still, the error is not much larger than the smallest possible using 5th degree polynomials. And the error is about 10x smaller than using a Taylor series approximation.

Plot[Exp[x] - (1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120), {x, -1, 1}]

Best polynomial approximation equal ripple error

Update: Jason Merrill pointed out in a comment what I was missing. Turns out MiniMaxApproximation finds an approximation that minimizes relative error. Since e x doesn’t change that much over [-1, 1], the absolute error and relative error aren’t radically different. There is no option to minimize absolute error.

When you look at the approximation error divided by e x you get the ripples you’d expect.

Best polynomial approximation equal ripple error


以上所述就是小编给大家介绍的《Best polynomial approximation equal ripple error》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

屏幕上的聪明决策

屏幕上的聪明决策

Shlomo Benartzi、Jonah Lehrer / 石磊 / 北京联合出版公司 / 2017-3 / 56.90

 为什么在手机上购物的人,常常高估商品的价值?  为什么利用网络订餐,人们更容易选择热量高的食物?  为什么网站上明明提供了所有选项,人们却还是选不到最佳的方案?  屏幕正在改变我们的思考方式,让我们变得更冲动,更容易根据直觉做出反应,进而做出错误的决策。在《屏幕上的聪明决策》一书中,什洛莫·贝纳茨教授通过引人入胜的实验及案例,揭示了究竟是什么影响了我们在屏幕上的决策。 ......一起来看看 《屏幕上的聪明决策》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具