AutoML-Zero: Evolving Machine Learning Algorithms from Scratch

栏目: IT技术 · 发布时间: 4年前

内容简介:Open source code for the paper: "AutoML-Zero aims to automatically discover computer programs that can solve machine learning tasks, starting from empty or random programs and using only basic math operations. The goal is to simultaneously search for all a

AutoML-Zero

Open source code for the paper: " AutoML-Zero: Evolving Machine Learning Algorithms From Scratch "

What is AutoML-Zero?

AutoML-Zero aims to automatically discover computer programs that can solve machine learning tasks, starting from empty or random programs and using only basic math operations. The goal is to simultaneously search for all aspects of an ML algorithm—including the model structure and the learning strategy—while employing minimal human bias .

AutoML-Zero: Evolving Machine Learning Algorithms from Scratch

Despite AutoML-Zero's challenging search space, evolutionary search shows promising results by discovering linear regression with gradient descent, 2-layer neural networks with backpropagation, and even algorithms that surpass hand designed baselines of comparable complexity. The figure above shows an example sequence of discoveries from one of our experiments, evolving algorithms to solve binary classification tasks. Notably, the evolved algorithms can be interpreted . Below is an analysis of the best evolved algorithm: the search process "invented" techniques like bilinear interactions, weight averaging, normalized gradient, and data augmentation (by adding noise to the inputs).

AutoML-Zero: Evolving Machine Learning Algorithms from Scratch

More examples, analysis, and details can be found in the paper .

5-Minute Demo: Discovering Linear Regression From Scratch

As a miniature "AutoML-Zero" experiment, let's try to automatically discover programs to solve linear regression tasks.

To get started, first install bazel following instructions here (bazel>=2.2.0 and C++>=14 are required), then run the demo with:

git clone https://github.com/google-research/google-research.git
cd google-research/automl_zero
./run_demo.sh

This script runs evolutionary search on 10 linear tasks ( T search in the paper). After each experiment, it evaluates the best algorithm discovered on 100 new linear tasks ( T select in the paper). Once an algorithm attains a fitness (1 - RMS error) greater than 0.9999, it is selected for a final evaluation on 100 unseen tasks . To conclude, the demo prints the results of the final evaluation and shows the code for the automatically discovered algorithm.

To make this demo quick, we use a much smaller search space than in the paper : only the math operations necessary to implement linear regression are allowed and the programs are constrained to a short, fixed length. Even with these limitations, the search space is quite sparse, as random search experiments show that only ~1 in 10 8 algorithms in the space can solve the tasks with the required accuracy. Nevertheless, this demo typically discovers programs similar to linear regression by gradient descent in under 5 minutes using 1 CPU (Note that the runtime may vary due to random seeds and hardware). We have seen similar and more interesting discoveries in the unconstrained search space (see more details in the paper ).

You can compare the automatically discovered algorithm with the solution from a human ML researcher (one of the authors):

def Setup():
  s2 = 0.001  # Init learning rate.

def Predict():  # v0 = features
  s1 = dot(v0, v1)  # Apply weights

def Learn():  # v0 = features; s0 = label
  s3 = s0 - s1  # Compute error.
  s4 = s3 * s1  # Apply learning rate.
  v2 = v0 * s4  # Compute gradient.
  v1 = v1 + v2  # Update weights.

In this human designed program, the Setup function establishes a learning rate, the Predict function applies a set of weights to the inputs, and the Learn function corrects the weights in the opposite direction to the gradient; in other words, a linear regressor trained with gradient descent. The evolved programs may look different even if they have the same functionality due to redundant instructions and different ordering, which can make them challenging to interpret. See more details about how we address these problems in the paper .

Reproducing Search Baselines

First install bazel following instructions here (bazel>=2.2.0 and C++>=14 are required),then run the following command to reproduce the results in Supplementary Section 9 ("Baselines") with the "Basic" method on 1 process (1 CPU):

[To be continued, ETA: March, 2020]

If you want to use more than 1 process, you will need to create your own implementation to parallelize the computation based on your particular distributed-computing platform. A platform-agnostic description of what we did is given in our paper.

We left out of this directory upgrades for the "Full" method that are pre-existing (hurdles) but included those introduced in this paper (e.g. FEC for ML algorithms).

Citation

If you use the code in your research, please cite:

TODO

Search keywords: machine learning, neural networks, evolution, evolutionary algorithms, regularized evolution, program synthesis, architecture search, NAS, neural architecture search, neuro-architecture search, AutoML, AutoML-Zero, algorithm search, meta-learning, genetic algorithms, genetic programming, neuroevolution, neuro-evolution.


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

人人都是架构师:分布式系统架构落地与瓶颈突破

人人都是架构师:分布式系统架构落地与瓶颈突破

高翔龙 / 电子工业出版社 / 2017-5 / 69

《人人都是架构师:分布式系统架构落地与瓶颈突破》并没有过多渲染系统架构的理论知识,而是切切实实站在开发一线角度,为各位读者诠释了大型网站在架构演变过程中出现一系列技术难题时的解决方案。《人人都是架构师:分布式系统架构落地与瓶颈突破》首先从分布式服务案例开始介绍,重点为大家讲解了大规模服务化场景下企业应该如何实施服务治理;然后在大流量限流/消峰案例中,笔者为大家讲解了应该如何有效地对流量实施管制,避......一起来看看 《人人都是架构师:分布式系统架构落地与瓶颈突破》 这本书的介绍吧!

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

html转js在线工具
html转js在线工具

html转js在线工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具