时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!

栏目: IT技术 · 发布时间: 4年前

内容简介:作者 | OverRedMaple

时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!

时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!

作者 | OverRedMaple

责编 | Carol

来源 | CSDN 博客

封图 | CSDN付费下载于东方 IC

如果你还在发愁究竟怎么计算时间复杂度和空间复杂度,那你是来对地方了!

名词解释:

在计算机科学中,时间复杂性,又称时间复杂度,算法的时间复杂度是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。

时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!

时间复杂度的表示方法

其实就是算法(代码)的执行效率,算法代码的执行时间。我们来看下面一个简单的代码:

int sumFunc(int n) {  int num = 0;     // 执行一次  for (int i = 1; i <= n; ++i) {  // 执行n次    num = num + i;         // 执行n次  }        return num;}

假设,每行代码的执行时间为t,那么这块代码的时间就是(2n+2)*t

由此得出: 代码执行时间T(n)与代码的执行次数是成正比的!

那么我们来看下一个例子:

int sumFunc(int n) {  int num = 0;    // 执行一次  for (int i = 1; i <= n; ++i) {       // 执行n次    for (int j = 1; j <= n; ++j) {     //执行n*n次      num = num + i * j;         // 执行n*n次    }  }}

同理,该代码执行时间为(2n*n+n+1)*t,没意见吧?继续往后看!

注意: 在数据结构/算法中,通常使用T(n)表示代码执行时间,n表示数据规模大小,f(n)表示代码执行次数综合,所以上面这个例子可以表示为 f(n)=(2n*n+n+1)*t ,其实就是一个求总和的式子, O (大写O)表示代码执行时间与 f(n) 成正比例。

根据上面两个例子得出结论: 代码的执行时间 T(n)与每行代码的执行次数 n 成正比 ,人们把这个规律总结成这么一个公式: T(n) = O(f(n))

所以呢,第一个例子中的 T(n)=O(2n+1),第二个例子中的 T(n)=O(2n*n+n+1),这就是时间复杂度表示法,也叫大O时间复杂度表示法。

但是, 大O时间复杂度 并不具体表示代码 真正的执行时间 ,而是表示 代码执行时间随数据规模增长的变化趋势 ,所以,也叫作 渐进时间复杂度 ,简称 时间复杂度

与泰勒公式相反的是,算了,扯哪去了…

当n变得越来越大时,公式中的低阶,常量,系数三部分影响不了其增长趋势,所以可以直接忽略他们,只记录一个最大的量级就可以了,所以上述两个例子实际他们的时间复杂度应该记为:T(n)=O(n) ,T(n)=O(n*n)

我想你应该明白大致是怎么回事了,那么我们来看看如何去计算它?

时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!

时间复杂度的分析与计算方法

(1)循环次数最多原则

我们上面说过了,当n变得越来越大时,公式中的低阶,常量,系数三部分影响不了其增长趋势,可以直接忽略他们,只记录一个最大的量级就可以了。因此我们在计算时间复杂度时, 只需关注循环次数最多的那段代码即可。

int sumFunc(int n) {
  int sum = 0;     //执行1次,忽略不计
  for (int i = 0; i < n; i++) {
    sum += i;    // 循环内执行次数最多,执行次数为n次,因此时间复杂度记为O(n)
  }  
  return sum;    //执行1次,忽略不计
}

(2)加法原则

int sumFunc(int n) {
  int sum = 0;     //常量级,忽略
    for (int i = 0; i < 99; i++) {
    sum += i;  //执行100次,还是常量级,忽略
  }


  for (int i = 0; i < n; i++) {
    sum += i;  //执行n次
  }


  for (int i = 0; i < n; i++){
    for (int j = 0; j < n; j++) {
      sum += i;  //执行n*n次
    }
  }
  return sum;
}

上述例子中,最大的两块代码时间复杂度分别为 O(n)和O(n*n),其结果本应该是:T(n)=O(n)+O(n*n),我们取其中最大的量级,因此整段代码的复杂度为:O(n * n)

所以得出结论: 量级最大的那段代码时间复杂度=总的时间复杂度

(3)乘法原则

嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

void Func1(int n) {
  for (int i = 0; i < n; i++) {
    Func2(n);  //执行n次,每次都会调用Func2函数执行n次
  }
}
void Func2(int n) {
  int sum = 0;
  for (int i = 0; i < n; i++)
  {
    sum += 1;  //执行n次
  }
}

因此这段代码时间复杂度为 O(n) * O(n) = O(n*n) = O(n*n)

同理,如果将其中一个n换成m,那么它的时间复杂度就是 O(n*m)

时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!

常见的几种时间复杂度

(1)O(1)常量级时间复杂度

void Func(void) {
  for (int i = 0; i < 100; i++) {
    printf("hello");  //执行一百次,也是常量级,记为O(1)
  }
}
void Func(void) {
  printf("hello");
  printf("hello");  
  printf("hello");
    //各执行一次,还是记为O(1)
}

相信你也看明白了,O(1)不是说代码只有一行,这个1它代表的是一个常量,即使它有以前一万行这样的也是O(1),因为它是固定的不会变化(也就是常量), 所以凡是常量级复杂度代码,均记为O(1)

(2)常见的O(n)复杂度

void Func(int n) {
  for (int i = 0; i < n; i++) {
    printf("hello");
  }
}

不用多说了吧!继续!

(3)O(logn),O(nlogn) ,这就有点难度了!

首先我们来回忆以下换底公式:

时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!

记住公式啊,来看例子:

void Func(int n) {
  for (int i = 1; i < n; i++) {
    i = i * 2;
  }
}

可以看出,i = i * 2这行代码执行次数是最多的,那么到底执行了多少次呢?

第一次 i=2,执行第二次 i=4,执行第三次 i=8…

假设它执行了x次,那么x的取值为:

时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!

当上述代码的2改成3的时候,x的取值也就是:

时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!

当然不管log的底数是几,是e也好,是10也罢,统统记为:

时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!

这是为啥子念?由换底公式可以计算出:

时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!

换底之后,可以看出log3(2)其实就是一个常数,忽略它!而在这场游戏中,log默认就是以2为底的,所以统统记为 O(logn)

void Func(int n) {
  for (int i = 0; i < n; i++) {
    Func2(n);    //执行n次,嵌套调用,每次调用执行logn次
  }
}
void Func2(int n) {
  for (int i = 0; i < n; i++)
  {
    i = i * 2;    //执行logn次
  }
}

所以这个O(nlogn)也很好理解了吧!

其他就不赘述了,相信聪明的你一定可以举一反三!如果对你有帮助,就点个“在看”支持下作者吧!

时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!

《原力计划【第二季】- 学习力挑战》 正式开始! 即日起至 3月21日, 千万流量支持原创作者! 更有专属【勋章】等你来挑战

时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!

推荐阅读:BZip2Codec压缩、Map端压缩控制、Reduce端压缩控制……都在这份Hadoop整合压缩知识点里了!
Linux 会成为主流桌面操作系统吗?
打开容器世界的大门:Docker、POD 初探
乔布斯遗孀裸捐 250 亿美元财产:没兴趣累积财富
号称3个月发布最强量子计算机,卖口罩的霍尼韦尔凭什么?
闪电网络的 5 个优点和4 个缺点、本质、来源与工作原理……一文带你读懂闪电网络!
真香,朕在看了!

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

快速傅里叶变换

快速傅里叶变换

K. R. Rao、D. N. Kim、J. J. Hwang / 万帅、杨付正 / 机械工业出版社 / 2013-3 / 98.00元

《国际信息工程先进技术译丛·快速傅里叶变换:算法与应用》深入浅出地阐述了快速傅里叶变换(FFT)的原理,系统地总结了各类FFT算法,并广泛精辟地介绍了FFT在视频和音频信号处理中的各种应用。《国际信息工程先进技术译丛·快速傅里叶变换:算法与应用》在阐述了离散傅里叶变换(DFT)的原理和性质之后,详细讨论了时域抽取(DIT)和频域抽取(DIF)的各类快速算法。论述了近似计算DFT的整数FFT、二维及......一起来看看 《快速傅里叶变换》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具