More Performance Evaluation Metrics You Should Know for Classification Problems

栏目: IT技术 · 发布时间: 5年前

内容简介:Precisionis the ratio ofLow precision: more the number of False positives the model predicts lesser the precision.Recall (Sensitivity)is the ratio of

The equations of 4 key classification metrics

Recall versus Precision

Precisionis the ratio of True Positives to all the positives predicted by the model.

Low precision: more the number of False positives the model predicts lesser the precision.

Recall (Sensitivity)is the ratio of True Positives to all the positives in your Dataset.

Low recall: more the number of False Negatives the model predicts lesser the recall.

The idea of recall and precision seems to be abstract. Let me illustrate the difference in three real cases.
  • the result of TP will be that the COVID 19 residents diagnosed with COVID-19.
  • the result of TN will be that healthy residents are with good health.
  • the result of FP will be that those actually healthy residents are predicted as COVID 19 residents.
  • the result of FN will be that those actual COVID 19 residents are predicted as the healthy residents

In case 1, which scenario do you think will have the highest cost?

Imagine that if we predict COVID 19 residents as healthy patients and they do not need to quarantine, there would be a massive number of COVID 19 infection. The cost of f alse negative is much higher the cost of f alse positives.

  • the result of TP will be that spam emails are placed in the spam folder.
  • the result of TN will be that important emails are received.
  • the result of FP will be that important emails are placed in the spam folder.
  • the result of FN will be that spam emails are received.

In case 2, which scenario do you think will have the highest cost?

Well, since missing important emails will clearly be more of a problem than receiving spam, we can say that in this case, FP will have a higher cost than FN.

  • the result of TP will be that bad loans are correctly predicted as bad loans.
  • the result of TN will be that good loans are correctly predicted as good loans.
  • the result of FP will be that (actual) good loans are incorrectly predicted as bad loans.
  • the result of FN will be that (actual) bad loans are incorrectly predicted as good loans.

In case 3, which scenario do you think will have the highest cost?

The banks would lose a bunch amount of money if the actual bad loans are predicted as good loans due to loans not being repaid. In other hands, banks wont be able to make more revenue if the actual good loans are predicted as bad loans. Therefore, the cost of False Negatives is much higher the cost of False Positives. Imagine that

Summary

In practice, the cost of false negative is not the same as the cost of false positive depending on the different specific cases. It is evident that not only should we calculate accuracy, but we should also evaluate our model using other metrics, for example, Recall and Precision .


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法设计与分析

算法设计与分析

陈慧南 / 电子工业出版社 / 2006-5 / 26.80元

《算法设计与分析:C++语言描述》内容分为3部分:算法和算法分析、算法设计策略及求解困难问题。第1部分介绍问题求解方法、算法复杂度和分析、递归算法和递推关系;第2部分讨论常用的算法设计策略:基本搜索和遍历方法、分治法、贪心法、动态规划法、回溯法和分枝限界法;第3部分介绍NP完全问题、随机算法、近似算法和密码算法。书中还介绍了两种新的数据结构:跳表和伸展树,以及它们特定的算法分析方法,并对现代密码学......一起来看看 《算法设计与分析》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具