内容简介:Hey HN community -I’m Ivan from Datasaur (NLP algorithms are being trained in a wide variety of industries - from customer service to legal contracts, forum moderation to restaurant reviews. All these algorithms benefit from recent breakthroughs in academi
Hey HN community -
I’m Ivan from Datasaur ( https://datasaur.ai/ ) - we build software to allow humans to more efficiently label data for training natural language processing (NLP).
NLP algorithms are being trained in a wide variety of industries - from customer service to legal contracts, forum moderation to restaurant reviews. All these algorithms benefit from recent breakthroughs in academia and a generous open-source community. However, in order to be deployed to the real world, they require a custom set of training data to learn and understand the language unique to each industry. Therefore, people around the world are meticulously labeling data samples.
Example sentence: London is the capital and largest city of England and of the United Kingdom.
Labels: “London” —> “capital”, “United Kingdom”
Labels: “London” —> “largest city”, “England”
In the last few years I’ve worked at companies such as Apple and Yahoo and noticed that many organizations tend to reinvent the wheel when creating labeling interfaces for their labelers. Some companies still do this work in Excel. We saw an opportunity to create a "single interface to rule them all" - to handle all sorts of text labeling tasks.
We leverage existing NLP capabilities to intelligently validate the quality of labels in a document and complement human judgment. Furthermore, we already understand terms like “Starbucks” and “New York” - why spend time labeling these terms from scratch every time? We created an API so you can plug in existing models to apply a first pass on labeling the document. We also built many other extensions to help labelers optimize their time - a “find and label” extension for labeling repetitive terms, a dictionary extension for quickly looking up unfamiliar terms. We spent the past year building out the labeling solution I wish I could have used.
We now handle named entity recognition, parts of speech, document labeling, coreference resolution (multiple words referring to the same object/person) and dependency parsing (drawing relationships between words). A case study with one of our clients shows 70% improved labeling efficiency upon adopting the Datasaur platform, and we have much more room to improve.
We also spoken with 100+ AI teams globally and identified the best practices in labeling. In addition to providing an enhanced interface, we can help track labeler performance, peer disagreement scores, and detect/remove labeler bias. By incorporating and encoding these features into our software, we can not only help improve the labeling efficiency but also improve the quality of the data and therefore the resulting AI model.
We believe that as AI becomes ever more prevalent and ubiquitous, labeling will become an increasingly important task. AI is a garbage-in, garbage-out technology, and the quantity and quality of data can often make a critical difference in the resulting AI model. We’re really excited to open Datasaur up to the world today and hear your feedback. Have you run into similar labeling issues? What tips and tricks have you employed to keep up with AI’s voracious appetite for data? We’d love to hear how you’ve tackled data labeling at your own companies. Thanks so much in advance!
Ivan
以上所述就是小编给大家介绍的《Launch HN: Datasaur (YC W20) – data labeling interface for NLP》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
JavaScript & jQuery交互式Web前端开发
[美]达克特(Duckett,J.) / 杜伟、柴晓伟、涂曙光 / 清华大学出版社 / 2015-6-9 / 79.80元
欢迎选择一种更高效的学习JavaScript和jQuery的方式。 你是一名JavaScript新手?或是您曾经向自己的Web页面上添加过一些脚本,但想以一种更好的方式来实现它们?本书非常适合您。本书不仅向您展示如何阅读和编写JavaScript代码,同时还会以一种简单且视觉化的方式,教您有关计算机编程的基础知识。阅读本书之前,您只需要对HTML和CSS有一些了解即可。 通过将编程理论......一起来看看 《JavaScript & jQuery交互式Web前端开发》 这本书的介绍吧!