内容简介:对于近期备受争议的ProgPoW算法,独立开发者kikx在今日披露了该算法存在的一个漏洞,这使其无法真正实现抗ASIC的目标,kikx还补充表示,这一漏洞是新发现的,并且不会对以太坊当前使用的Ethash算法造成威胁。对此,以太坊研发人员Philippe Castonguay评论称:“看起来ProgPoW的当前实现,可能并没有那么抗ASIC,基本上,ProgPoW哈希函数使用了一个64位种子,ASIC可以“轻松”地强制执行,而不是像预期的那样进行挖矿。这需要更多的关注来正式确认。”
对于近期备受争议的ProgPoW算法,独立开发者kikx在今日披露了该算法存在的一个漏洞,这使其无法真正实现抗ASIC的目标,kikx还补充表示,这一漏洞是新发现的,并且不会对以太坊当前使用的Ethash算法造成威胁。
对此,以太坊研发人员Philippe Castonguay评论称:
“看起来ProgPoW的当前实现,可能并没有那么抗ASIC,基本上,ProgPoW哈希函数使用了一个64位种子,ASIC可以“轻松”地强制执行,而不是像预期的那样进行挖矿。这需要更多的关注来正式确认。”
此后,以太坊硬分叉协调员James Hancock对这一漏洞的存在进行了确认,随后表示了感谢。那这一漏洞到底是肿么一回事呢?
我们来看看kikx披露的细节吧:
ProgPoW的设计漏洞
ProgPow存在一个设计缺陷:
64位 seed
太小了,这允许ASIC无需存储访问即可计算哈希。
初步实现
感谢chfast提供了可读的实现!
ProgPoW 哈希函数被定义为:
result hash(const epoch_context& context, int block_number, const hash256& header_hash, uint64_t nonce) noexcept { const uint64_t seed = keccak_progpow_64(header_hash, nonce); const hash256 mix_hash = hash_mix(context, block_number, seed, calculate_dataset_item_2048); const hash256 final_hash = keccak_progpow_256(header_hash, seed, mix_hash); return {final_hash, mix_hash}; }
ASIC友好计算
假设给出了一个区块头block_header
以及一个区块数
block_number
。
然后,执行以下3个步骤:
- 将
seed
固定为任何64位值,然后计算mix_hash = hash_mix(block_number, seed)
; - 搜索
extra_nonce
,以便header_hash
满足难度条件; - 搜索
nonce
,以便keccak_progpow_64(header_hash, nonce) == seed
;
seed
和
block_number
计算
mix_hash
。由于
mix_hash
被设计为
seed
和
block_number
的函数,所以我们得到一个有效的三元组
(seed,mix_hash,block_number)
。现在,我们的目标是找到满足以下两个条件的
header_hash
和
nonce
:
keccak_progpow_64(header_hash, nonce) == seed keccak_progpow_256(header_hash, seed, mix_hash) <= boundary
(header_hash, seed, mix_hash, block_number)
,但
nonce
是自由的。 最后,步骤3扫描
nonce
以查找条件(A)。由于
seed
只有64位长度,所以条件(A)仅提供64位安全性,并且可以由ASIC执行步骤3。
计算成本
有四个函数,keccak_1600
,
keccak_progpow_64
,
hash_mix
以及
keccak_progpow_256
。成本的计算,可通过计算所需函数的调用来实现,这取决于网络难度
D
。
在正常的哈希计算中,需要一个 keccak_1600
调用,才能从 block_header
计算出 header_hash
,并针对每个 nonce
值依次调用其他函数。
而在ASIC哈希计算中,在步骤1中需要一个 hash_mix
调用,在步骤2中则要调用 keccak_1600
和 keccak_progpow_256
,在步骤3中将调用 keccak_progpow_64
。
由于 hash_mix
在我们的ASIC计算中仅被调用一次,因此我们可以使用主机CPU来计算 hash_mix
。而其它函数都是keccak哈希函数,不需要memory存储,并且可以在ASIC上轻松计算。
我们需要比较 keccak_progpow_64
row中的 D
和 2^64
。简单地说,更大的 D
会使ASIC更有利可图。估计阈值门槛是困难的,但我认为目前的难度 (> 2^50)是足够大的。
Demo
演示位于此存储库中。
$ git clone https://github.com/kik/progpow-exploit.git $ cd progpow-exploit $ mkdir build $ cd build $ cmake .. $ make $ ./test/ethash-test --gtest_filter=asic.search
在此演示中,seed被截断为24位宽度,以便在CPU上运行。参见代码。
测试代码是简单的。
这里定义了search_asic
由于这一漏洞的存在,以太坊矿机商们是不是可以松一口气了?
以上所述就是小编给大家介绍的《ProgPoW算法被曝漏洞,以太坊ASIC挖矿已不可阻挡?》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 使用 Envoy 和 AdGuard Home 阻挡烦人的广告
- 2020 年 Go 语言盘点:新冠大流行阻挡不了 Go 演进的步伐
- 通俗易懂--决策树算法、随机森林算法讲解(算法+案例)
- 限流算法之漏桶算法、令牌桶算法
- 什么是Paxos算法?Paxos算法是区块链核心算法之一
- 一文读懂对称加密算法、非对称加密算法和Hash算法
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Apache源代码全景分析第1卷
2009-5 / 88.00元
《Apache源代码全景分析第1卷:体系结构与核心模块》是“Apache源代码全景分析”的第1卷。书中详细介绍了Apache的基础体系结构和核心模块的实现机制,包括配置文件、模块化结构、多任务并发,以及网络连接和请求读取,其中多任务并发体系结构是《Apache源代码全景分析第1卷:体系结构与核心模块》分析的重点,讨论了Prefork、Worker及WinNT三种MPM。《Apache源代码全景分析......一起来看看 《Apache源代码全景分析第1卷》 这本书的介绍吧!