内容简介:This page explains pricing for worker nodes and cluster management in Google Kubernetes Engine (GKE).Starting June 6, 2020, GKE clusters will accrue a management fee of $0.10 per cluster per hour, irrespective of cluster size or topology. Onezonal cluster
This page explains pricing for worker nodes and cluster management in Google Kubernetes Engine (GKE).
Starting June 6, 2020, GKE clusters will accrue a management fee of $0.10 per cluster per hour, irrespective of cluster size or topology. Onezonal cluster per billing account is free. GKE cluster management fees do not apply toAnthos GKE clusters.
To demonstrate our commitment to superior performance, we are also introducing a Service Level Agreement (SLA) that's financially backed with a guaranteed availability of 99.95% forregional clusters and 99.5% forzonal clusters running a version of GKE available through theStable release channel .
This SLA also covers clusters that follow the Kubernetes Open Source Software (OSS) version skew policy and clusters that use the default version offered in the Stable channel.
Free cluster
GKE provides each billing account onezonal cluster for free.
Pricing for cluster management
Starting June 6, 2020, GKE will charge a cluster management fee of $0.10 per cluster per hour.
Pricing for worker nodes
GKE uses Compute Engine instances for worker nodes in the cluster . You are billed for each of those instances according to Compute Engine's pricing , until the nodes are deleted. Compute Engine resources are billed on a per-second basis with a one-minute minimum usage cost.
Pricing calculator
You can use the Google Cloud pricing calculator to estimate your monthly GKE charges, including cluster management fees and worker node pricing.
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
基于内容图像检索技术
周明全 / 清华大学 / 2007-12 / 28.00元
《基于内容图像检索技术》从理论方法研究与实现技术角度,总结归纳了基于内容图像检索(CBIR)技术的研究与进展,并融入了作者多年来的相关研究与应用成果,系统地介绍了CBIR的主要概念、基本原理、典型方法、实用范例以及新动向。《基于内容图像检索技术》共有12章分为五部分:第一部分是概述,分析了CBIR的体系结构、技术现状和发展趋势;第一部分讨论图像特征提取,给出图像低层特征(颜色、形状、纹理、空间关系......一起来看看 《基于内容图像检索技术》 这本书的介绍吧!