Google Cloud charging for Kubernetes Clusters beginning June 2020

栏目: IT技术 · 发布时间: 5年前

内容简介:This page explains pricing for worker nodes and cluster management in Google Kubernetes Engine (GKE).Starting June 6, 2020, GKE clusters will accrue a management fee of $0.10 per cluster per hour, irrespective of cluster size or topology. Onezonal cluster

This page explains pricing for worker nodes and cluster management in Google Kubernetes Engine (GKE).

Starting June 6, 2020, GKE clusters will accrue a management fee of $0.10 per cluster per hour, irrespective of cluster size or topology. Onezonal cluster per billing account is free. GKE cluster management fees do not apply toAnthos GKE clusters.

To demonstrate our commitment to superior performance, we are also introducing a Service Level Agreement (SLA) that's financially backed with a guaranteed availability of 99.95% forregional clusters and 99.5% forzonal clusters running a version of GKE available through theStable release channel .

This SLA also covers clusters that follow the Kubernetes Open Source Software (OSS) version skew policy and clusters that use the default version offered in the Stable channel.

Free cluster

GKE provides each billing account onezonal cluster for free.

Pricing for cluster management

Starting June 6, 2020, GKE will charge a cluster management fee of $0.10 per cluster per hour.

Pricing for worker nodes

GKE uses Compute Engine instances for worker nodes in the cluster . You are billed for each of those instances according to Compute Engine's pricing , until the nodes are deleted. Compute Engine resources are billed on a per-second basis with a one-minute minimum usage cost.

Pricing calculator

You can use the Google Cloud pricing calculator to estimate your monthly GKE charges, including cluster management fees and worker node pricing.


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

大数据时代的算法:机器学习、人工智能及其典型实例

大数据时代的算法:机器学习、人工智能及其典型实例

刘凡平 / 电子工业出版社 / 2017-1 / 49

《大数据时代的算法:机器学习、人工智能及其典型实例》介绍在互联网行业中经常涉及的算法,包括排序算法、查找算法、资源分配算法、路径分析算法、相似度分析算法,以及与机器学习相关的算法,包括数据分类算法、聚类算法、预测与估算算法、决策算法、关联规则分析算法及推荐算法。《大数据时代的算法:机器学习、人工智能及其典型实例》涉及的相关算法均为解决实际问题中的主流算法,对于工作和学习都有实际参考意义。 《......一起来看看 《大数据时代的算法:机器学习、人工智能及其典型实例》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具