内容简介:随着流量业务的高速发展以及已经到来的5G时代,业务支撑系统的规模不断增大、服务不断增多,业务、应用和系统运行性能指标数据持续以指数级的速度增长,每日计费话单量已突破百亿。系统监控的实时性、准确性的能力不足成为运维工作的瓶颈。江苏移动IT运维团队以SRE理念为指导,结合实时监控“高并发写入”、“低查询延时,高查询并发”、“轻量级存储”等实际诉求,深入研究时序数据库的特性和适用程度,打造符合自身系统运维特点的性能管理平台,实现百亿级话单处理过程的实时全景监控分析。目前市场较流行的时序数据库产品有Promethe
背景
随着流量业务的高速发展以及已经到来的5G时代,业务支撑系统的规模不断增大、服务不断增多,业务、应用和系统运行性能指标数据持续以指数级的速度增长,每日计费话单量已突破百亿。系统监控的实时性、准确性的能力不足成为运维工作的瓶颈。
江苏移动IT运维团队以SRE理念为指导,结合实时监控“高并发写入”、“低查询延时,高查询并发”、“轻量级存储”等实际诉求,深入研究时序数据库的特性和适用程度,打造符合自身系统运维特点的性能管理平台,实现百亿级话单处理过程的实时全景监控分析。
时序库选型
目前市场较流行的时序数据库产品有Prometheus、Graphite、InfluxDB、OpenTSDB等,我们比对了这些产品的使用范围、优缺点。
通过比较,我们发现Prometheus最适合搭建BOSS运维监控系统。单个的Prometheus实例就能实现每秒上百万的采样,同时支持对于采集数据的快速查询。Prometheus对于采样数据进行压缩存储,16字节的采样数据平均只需要1.37个字节的存储空间,极大减少了存储资源占用。查询实时数据时,磁盘I/O平均负载小于1%。
性能管理平台架构设计
本方案中运维人员以Prometheus时序库为中心,实现与应用相关的所有实时监控数据的采集、清洗、存储,并实时展现系统总体和各环节、各独立应用处理性能、趋势性的预测和智能分析,准确掌握系统运行健康度。
图1 系统架构
- 根据业务系统的部署,我们在双中心各部署一套Prometheus集群。
- 对于系统、应用日志、 Java 应用我们采用拉取方式采集指标数据;对于应用、业务、组件的性能指标数据采用推送网关(pushgateway)暂存数据,然后再由Prometheus拉取的方式采集。
- 为保证实时采集和查询的高性能,采集Prometheus时序库中保存短期内较近数据,同时写入一份到远程的历史时序库中。
- 可视化展示和实时告警通过负载均衡从prometheus和历史库中采集数据。
适配性改造
在部署和使用过程中我们发现原生Prometheus存在一些不足,为此我们进行了一些适配改造工作。
- 夯实高可用能力:原生的Prometheus部署都是单点的,不足以保证数据可用性,为此我们通过服务注册的方式实现了Prometheus的高可用性。集群启动时每个节点都尝试获取锁,获取成功的节点成为主节点执行任务,若主节点宕机,从节点获取锁成为主节点并接管服务。
- 优化数据存储方式:在Prometheus节点上保存短周期数据用于告警实时触发和展现,引入InfluxDB用于实时传输并保存长周期的历史数据,保证采集数据的连续性并为后续数据挖掘提供资源支撑。
- 自研改造推送网关组件:在实际使用过程中我们发现推送网关(pushgateway)中的数据有较大概率被重复采集到Prometheus中,容易产生错误的性能数据和误告警。为此我们在Prometheus的采集方法中增加从pushgateway拉取数据后主动删除数据的保障机制,确保数据采集的唯一性。
- 拓展集成数据展示方式:性能数据可视化展示原先采用Grafana原生组件,但是使用过程中发现插件配置灵活性不足,难以展现多种形式关联指标数据的情形。因此我们自研了可视化工具,实现涵盖系统、应用、业务性能等多维度指标的个性化展示,实时掌控系统健康状态。
- 更改时区:原生的Prometheus查询指标时页面显示的指标趋势图是根据GMT时间显示的,与北京时间相差8小时,为此我们将源码中获取时间的方式修改成从本地系统时间获取,成功解决了该问题。
指标采集范围
结合实际运维场景及需求,整体指标采集分为两个方面,性能指标和业务指标:
实时展示
通过对各类指标数据加工汇聚,生成BOSS系统健康度统一视图, 涵盖各应用性能、业务量、各类服务调用量及响应时间等,可以灵活通过多种维度实时展示指标数据,支持下钻到具体应用、具体进程性能指标,快速实时掌握第一手运维监控数据,实现“运维监控一张图”,大幅提升系统监控和分析效率,有效节约运维人力资源。
图3 实时全景视图
趋势预测及异常检测
海量的性能时序数据是运维的宝贵数据资产沉淀,对基础数据进行有效的建模分析和规划,辅以合理的算法学习,实现部分场景的智能化分析和监测,将大幅提升运维效能,目前已应用于以下运维场景:
- 性能预测:通过对应用处理速度的实时监控、历史数据比对分析,自动计算应用处理最大速度,实时准确预测完成待处理话单所需时间。
- 业务趋势预测:通过对时序库中存储大量系统和业务指标数据按天、周、月维度进行平均、加权序时平均、移动平均、加权移动平均、特列统计等分析,预测未来话单处理趋势、系统资源利用趋势,为系统容量管理提供合理依据。
- 异常检测:通过对数据进行环比分析、同比分析、均值变化分析、相同时间窗口内数据的均值和标准差分析、局部数据波动分析、周期性特征分析等算法及时发现业务处理异常。
图4 性能预测场景示意
总结与展望
目前性能管理平台能满足每秒10万级的监控指标入库,支撑百亿级话单处理过程的实时监控。可通过对这些海量数据的分析,实现容量、性能、故障的精准定位和预测,并前置性地做好应对措施以规避问题的产生和蔓延。
该性能平台已成功应用在BOSS系统,未来将进一步总结经验并持续改进提升,陆续向其他业务支撑领域和管信领域进行推广。
以上所述就是小编给大家介绍的《江苏移动基于Prometheus实现百亿级话单实时全景监控》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- LearningAVFoundation之拍摄+实时滤镜+实时写入
- 基于实时计算(Flink)与高斯模型构建实时异常检测系统
- 什么是实时计算,实时计算的相关技术主要分为哪几个阶段?
- 实时离线融合在唯品会的进展:在实时技术、数据、业务中寻找平衡
- 实时离线融合在唯品会的进展:在实时技术、数据、业务中寻找平衡
- 与实时音视频技术大牛面对面,RTE 2020 实时互联网大会线下站开放预约
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
图解服务器端网络架构
[日] 宫田宽士 / 曾薇薇 / 人民邮电出版社 / 2015-4 / 79.00元
本书以图配文,详细说明了服务器端网络架构的基础技术和设计要点。基础设计是服务器端网络架构最重要的一个阶段。本书就立足于基础设计的设计细分项目,详细介绍各细分项目的相关技术和设计要点。全书共分为5章,分别讲述进行物理设计、逻辑设计、安全设计和负载均衡设计、高可用性设计以及管理设计时所必需的技术和设计要点。一起来看看 《图解服务器端网络架构》 这本书的介绍吧!
UNIX 时间戳转换
UNIX 时间戳转换
HSV CMYK 转换工具
HSV CMYK互换工具