Cost of a thread in C++ under Linux

栏目: IT技术 · 发布时间: 5年前

内容简介:Almost all our computers are made of several processing cores. Thus it can be efficient to “parallelize” expensive processing in a multicore manner. That is, instead of using a single core to do all of the work, you divide the work among multiple cores. A

Almost all our computers are made of several processing cores. Thus it can be efficient to “parallelize” expensive processing in a multicore manner. That is, instead of using a single core to do all of the work, you divide the work among multiple cores. A standard way to approach this problem is to create threads.

A C++ thread object executes some functions, possibly on a thread created by the operating system, and goes away. If you wanted to increment a counter using a C++ thread, you could do it in this manner:

auto mythread = std::thread([] { counter++; });
mythread.join();

It is obviously silly code that you should never use as is, it is a mere illustration. Creating a new thread is not free. Exactly how expensive it might be depends on several parameters. But can we get some rough idea?

For this purpose, I wrote a small benchmark where I just create a thread , increment a counter and let the thread die. It is the time elapsed while waiting for the thread to run its course. My program computes the mean and standard error of the time, as well as the minimum and maximum duration of the test. For simplicity, I am just going to report the means:

system time per thread
Ampere server (Linux, ARM) 200,000 ns
Skylake server (Linux, Intel) 9,000 ns
Rome server (Linux, AMD) 20,000 ns

I am deliberately not going into the details of the compiler, system library, operating system, RAM and all that fun stuff. You should not look at my table and make far reaching conclusions.

What is clear, however, is that creating a thread may cost thousands of CPU cycles. If you have a cheap function that requires only hundreds of cycles, it is almost surely wasteful to create a thread to execute it. The overhead alone is going to set you back.

There are clever ways to amortize the cost of a thread. For example, you may avoid the constant creation of new threads as in my benchmark. Yet to amortize, you still need to have enough work to make it worthwhile.


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

P3P Web隐私

P3P Web隐私

克劳娜著、技桥译 / 克劳娜 / 清华大学出版社 / 2004-5 / 45.0

自万维网络中出现商业站点以来,基于Web的商业需求和用户的隐私权利之间就存在着不断的斗争。Web开发者们需要收集有关用户的信息,但是他们也需要表示出对用户隐私的尊重。因此隐私偏好工程平台,或者称之为P3P,就作为满足双方利益的技术应运而生了。 P3P由万维网协会研制,它为Web用户提供了对自己公开信息的更多的控制。支持P3P的Web站点可以为浏览者声明他们的隐私策略。支持P3P的浏览......一起来看看 《P3P Web隐私》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

在线进制转换器
在线进制转换器

各进制数互转换器